Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 51(5): 2195-2214, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36794705

RESUMEN

NF-κB activates the primary inflammatory response pathway responsible for methicillin-resistant Staphylococcus aureus (MRSA)-induced lung inflammation and injury. Here, we report that the Forkhead box transcription factor FOXN3 ameliorates MRSA-induced pulmonary inflammatory injury by inactivating NF-κB signaling. FOXN3 competes with IκBα for binding to heterogeneous ribonucleoprotein-U (hnRNPU), thereby blocking ß-TrCP-mediated IκBα degradation and leading to NF-κB inactivation. FOXN3 is directly phosphorylated by p38 at S83 and S85 residues, which induces its dissociation from hnRNPU, thus promoting NF-κB activation. After dissociation, the phosphorylated FOXN3 becomes unstable and undergoes proteasomal degradation. Additionally, hnRNPU is essential for p38-mediated FOXN3 phosphorylation and subsequent phosphorylation-dependent degradation. Functionally, genetic ablation of FOXN3 phosphorylation results in strong resistance to MRSA-induced pulmonary inflammatory injury. Importantly, FOXN3 phosphorylation is clinically positively correlated with pulmonary inflammatory disorders. This study uncovers a previously unknown regulatory mechanism underpinning the indispensable role of FOXN3 phosphorylation in the inflammatory response to pulmonary infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Proteínas I-kappa B , Staphylococcus aureus Resistente a Meticilina/metabolismo , Transducción de Señal , Neumonía/genética , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
2.
J Biol Chem ; 294(8): 2880-2891, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30587574

RESUMEN

Accumulating evidence indicates that a wide range of E3 ubiquitin ligases are involved in the development of many human diseases. Searching for small-molecule modulators of these E3 ubiquitin ligases is emerging as a promising drug discovery strategy. Here, we report the development of a cell-based high-throughput screening method to identify modulators of E3 ubiquitin ligases by integrating the ubiquitin-reference technique (URT), based on a fusion protein of ubiquitin located between a protein of interest and a reference protein moiety, with a Dual-Luciferase system. Using this method, we screened for small-molecule modulators of SMAD ubiquitin regulatory factor 1 (SMURF1), which belongs to the NEDD4 family of E3 ubiquitin ligases and is an attractive therapeutic target because of its roles in tumorigenesis. Using RAS homolog family member B (RHOB) as a SMURF1 substrate in this screen, we identified a potent SMURF1 inhibitor and confirmed that it also blocks SMURF1-dependent degradation of SMAD family member 1 (SMAD1) and RHOA. An in vitro auto-ubiquitination assay indicated that this compound inhibits both SMURF1 and SMURF2 activities, indicating that it may be an antagonist of the catalytic activity of the HECT domain in SMURF1/2. Moreover, cell functional assays revealed that this compound effectively inhibits protrusive activity in HEK293T cells and blocks transforming growth factor ß (TGFß)-induced epithelial-mesenchymal transition (EMT) in MDCK cells, similar to the effects on these processes caused by SMURF1 loss. In summary, the screening approach presented here may have great practical potential for identifying modulators of E3 ubiquitin ligases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina/metabolismo , Animales , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Dev Cell ; 59(3): 384-399.e5, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38198890

RESUMEN

Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.


Asunto(s)
Ácidos Grasos , Lipoilación , Músculo Esquelético , Proteínas Qa-SNARE , Regeneración , Animales , Humanos , Ratones , Transporte Biológico , Antígenos CD36/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Proteínas Qa-SNARE/metabolismo
4.
Nat Commun ; 14(1): 2342, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095176

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo , Proliferación Celular/fisiología
5.
Sci Adv ; 6(4): eaay9819, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010791

RESUMEN

Disassembly of intercellular junctions is a hallmark of epithelial-mesenchymal transition (EMT). However, how the junctions disassemble remains largely unknown. Here, we report that E3 ubiquitin ligase Smurf1 targets p120-catenin, a core component of adherens junction (AJ) complex, for monoubiquitination during transforming growth factor ß (TGFß)-induced EMT, thereby leading to AJ dissociation. Upon TGFß treatment, activated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylates T900 of p120-catenin to promote its interaction with Smurf1 and subsequent monoubiquitination. Inhibition of T900 phosphorylation or ubiquitination of p120-catenin abrogates TGFß-induced AJ dissociation and consequent tight junction (TJ) dissociation and cytoskeleton rearrangement, hence markedly blocking lung metastasis of murine breast cancer. Moreover, the T900 phosphorylation level of p120-catenin is positively correlated with malignancy of human breast cancer. Hence, our study reveals the underlying mechanism by which TGFß induces dissociation of AJs during EMT and provides a potential strategy to block tumor metastasis.


Asunto(s)
Cateninas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Uniones Adherentes , Animales , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Células Cultivadas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias/etiología , Neoplasias/patología , Fosforilación , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Catenina delta
6.
Nat Commun ; 9(1): 4139, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297842

RESUMEN

DNA damage can induce autophagy; however, the underlying mechanism remains largely unknown. Here we report that DNA damage leads to autophagy through ATR/Chk1/RhoB-mediated lysosomal recruitment of TSC complex and subsequent mTORC1 inhibition. DNA damage caused by ultraviolet light (UV) or alkylating agent methyl methanesulphonate (MMS) results in phosphorylation of small GTPase RhoB by Chk1. Phosphorylation of RhoB enhances its interaction with the TSC2, and promotes its sumoylation by PIAS1, which is required for RhoB/TSC complex to translocate to lysosomes. As a result, mTORC1 is inhibited, and autophagy is activated. Knockout of RhoB severely attenuates lysosomal translocation of TSC complex and the DNA damage-induced autophagy. Reintroducing wild-type but not sumoylation-resistant RhoB into RhoB-/- cells restores the onset of autophagy. Hence, our study identifies a molecular mechanism for translocation of TSC complex to lysosomes in response to DNA damage, which depends on ATR/Chk1-mediated RhoB phosphorylation and sumoylation.


Asunto(s)
Autofagia , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones Noqueados , Fosforilación , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Sumoilación , Proteína de Unión al GTP rhoB/genética
7.
Nat Commun ; 5: 4901, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25249323

RESUMEN

ATM- and RAD3-related (ATR)/Chk1 and ataxia-telangiectasia mutated (ATM)/Chk2 signalling pathways play critical roles in the DNA damage response. Here we report that the E3 ubiquitin ligase Smurf1 determines cell apoptosis rates downstream of DNA damage-induced ATR/Chk1 signalling by promoting degradation of RhoB, a small GTPase recognized as tumour suppressor by promoting death of transformed cells. We show that Smurf1 targets RhoB for degradation to control its abundance in the basal state. DNA damage caused by ultraviolet light or the alkylating agent methyl methanesulphonate strongly activates Chk1, leading to phosphorylation of Smurf1 that enhances its self-degradation, hence resulting in a RhoB accumulation to promote apoptosis. Suppressing RhoB levels by overexpressing Smurf1 or blocking Chk1-dependent Smurf1 self-degradation significantly inhibits apoptosis. Hence, our study unravels a novel ATR/Chk1/Smurf1/RhoB pathway that determines cell fate after DNA damage, and raises the possibility that aberrant upregulation of Smurf1 promotes tumorigenesis by excessively targeting RhoB for degradation.


Asunto(s)
Daño del ADN/fisiología , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Análisis de Varianza , Apoptosis/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Fraccionamiento Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/efectos de los fármacos , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Células HEK293 , Humanos , Immunoblotting , Metilmetanosulfonato/efectos adversos , Proteínas Quinasas/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína de Unión al GTP rhoB/genética
8.
Cell Rep ; 7(3): 871-82, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24746824

RESUMEN

RAS genes are among the most frequently mutated proto-oncogenes in cancer. However, how Ras stability is regulated remains largely unknown. Here, we report a regulatory loop involving the E3 ligase Nedd4-1, Ras, and PTEN. We found that Ras signaling stimulates the expression of Nedd4-1, which in turn acts as an E3 ubiquitin ligase that regulates Ras levels. Importantly, Ras activation, either by oncogenic mutations or by epidermal growth factor (EGF) signaling, prevents Nedd4-1-mediated Ras ubiquitination. This leads to Ras-induced Nedd4-1 overexpression, and subsequent degradation of the tumor suppressor PTEN in both human cancer samples and cancer cells. Our study thus unravels the molecular mechanisms underlying the interplay of Ras, Nedd4-1, and PTEN and suggests a basis for the high prevalence of Ras-activating mutations and EGF hypersignaling in cancer.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas ras/metabolismo , Animales , Carcinogénesis , Línea Celular Tumoral , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Factor de Crecimiento Epidérmico/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Ubiquitina-Proteína Ligasas Nedd4 , Neoplasias/metabolismo , Neoplasias/patología , Fosfohidrolasa PTEN/metabolismo , Unión Proteica , Transducción de Señal , Trasplante Heterólogo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA