Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(21): 6386-6394, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743576

RESUMEN

Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.

2.
Small ; 20(2): e2305090, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658523

RESUMEN

The pursuit of enhancing the heat transfer performance of composite elastomers as the thermal interface materials (TIMs) is a compelling and timely endeavor, given the formidable challenges posed by interfacial thermal transport in the domains of energy science, electronic technology, etc. Despite the efficacy of phase change materials (PCMs) in enhancing composite elastomers' interfacial compatibility, thereby reducing contact thermal resistance for heat transfer improvement, their leakage post-transition has impeded the widespread adoption of this approach. Herein, a strategy is proposed for developing a solid-solid phase change composite elastomer by grafting alkene chains onto the crosslink network to eliminate the possibility of leakage. A series characterization suggest that the resulting material possesses a self-adjusting interfacial compatibility feature to help reduce contact thermal resistance for heat transfer facilitating. The investigations on adhesion strength and surface energy reveal that the presence of amorphous grafted alkane chains at the interface facilitates easier absorption onto the contacting solid surface, enhancing intermolecular interactions at the interface to promote across-boundary heat transfer. By integrating these findings with the thermal performance evaluation of composite elastomers using a real test vehicle, valuable insights are gained for the design of composite elastomers, establishing their suitability as TIMs in relevant fields.

3.
Small ; 20(22): e2306946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38133511

RESUMEN

Modern microelectronics and emerging technologies such as wearable electronics and soft robotics require elastomers to integrate high damping with low thermal resistance to avoid damage caused by vibrations and heat accumulation. However, the strong coupling between storage modulus and loss factor makes it generally challenging to simultaneously increase both thermal conductance and damping. Here, a strategy of introducing hierarchical interaction and regulating fillers in polybutadiene/spherical aluminum elastomer composites is reported to simultaneously achieve extraordinary damping ability of tan δ > 1.0 and low thermal resistance of 0.15 cm2 K W-1, which surpasses state-of-the-art elastomers and their composites. The enhanced damping is attributed to increased energy dissipation via introducing the hierarchical hydrogen bond interactions in polybutadiene networks and the addition of spherical aluminum, which also functions as a thermally conductive filler to achieve low thermal resistance. As a proof of concept, the polybutadiene/spherical aluminum elastomer composites are used as thermal interface materials, showing effective heat dissipation for electronic devices in vibration scenarios. The combination of outstanding damping performance and extraordinary heat dissipation ability of the elastomer composites may create new opportunities for their applications in electronics.

4.
Small ; : e2402265, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757418

RESUMEN

The emerging applications of thermally conductive elastomer composites in modern electronic devices for heat dissipation require them to maintain both high toughness and resilience under thermomechanical stresses. However, such a combination of thermal conductivity and desired mechanical characteristics is extremely challenging to achieve in elastomer composites. Here this long-standing mismatch is resolved via regulating interfacial structure and dynamics response. This regulation is realized both by tuning the molecular weight of the dangling chains in the polymer networks and by silane grafting of the fillers, thereby creating a broad dynamic-gradient interfacial region comprising of entanglements. These entanglements can provide the slipping topological constraint that allows for tension equalization between and along the chains, while also tightening into rigid knots to prevent chain disentanglement upon stretching. Combined with ultrahigh loading of aluminum-fillers (90 wt%), this design provides a low Young's modulus (350.0 kPa), high fracture toughness (831.5 J m-2), excellent resilience (79%) and enhanced thermal conductivity (3.20 W m-1 k-1). This work presents a generalizable preparation strategy toward engineering soft, tough, and resilient high-filled elastomer composites, suitable for complex environments, such as automotive electronics, and wearable devices.

5.
Langmuir ; 40(15): 8108-8114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568421

RESUMEN

Although intense efforts have been devoted to the development of thermally conductive epoxy resin composites, most previous works ignore the importance of the contact thermal resistance between epoxy resin composites and mating surfaces. Here, we report on epoxy resin/hexagonal boron nitride (h-BN) composites, which show low contact thermal resistance with the contacting surface by tuning adhesion energy. We found that adhesion energy increases with increasing the ratio of soybean-based epoxy resin/amino silicone oil and h-BN contents. The adhesion energy has a negative correlation with the contact thermal resistance; that is, enhancing the adhesion energy will lead to reduced contact thermal resistance. The contact thermal conductance increases with the h-BN contents and is low to 0.025 mm2·K/W for the epoxy resin/60 wt % h-BN composites, which is consistent with the theoretically calculated value. By investigating the wettability and chain dynamics of the epoxy resin/h-BN composites, we confirm that the low contact thermal resistance stems from the increased intermolecular interaction between the epoxy resin chains. The present study provides a practical approach for the development of epoxy resin composites with enhanced thermal conductivity and reduced contact thermal resistance, aiming for effective thermal management of electronics.

6.
Phys Chem Chem Phys ; 26(5): 4429-4436, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240037

RESUMEN

Most tough elastomer composites are reinforced by introducing sacrificial structures and fillers. Understanding the contribution of fillers and sacrificial bonds in elastomer composites to the energy dissipation is critical for the design of high-toughness materials. However, the energy dissipation mechanism in elastomer composites remains elusive. In this study, using a tearing test and time-temperature superposition, we investigate the effect of fillers and sacrificial bonds on the energy dissipation of elastomer composites consisting of poly(lipoic acid)/silver-coated Al fillers. We found that the fillers and sacrificial bonds mutually enhance both the intrinsic fracture energy and the bulk energy dissipation, and moreover the sacrificial bonds play a more important role in enhancing fracture toughness than the fillers. It is unreasonable to rely solely on the loss factor for bulk energy dissipation. The addition of sacrificial bonds results in a chain segment experiencing greater binding force compared to the addition of fillers. This suggests that the chain segment consumes more energy during its movement. By calculating the length of the Kuhn chain segment and the Kuhn number, it is evident that the addition of sacrificial bonds results in a greater binding force for the chain segment than the addition of fillers, and this enhanced binding force increases the energy consumption during the motion of the chain segment.

7.
Nano Lett ; 23(14): 6673-6680, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37428875

RESUMEN

Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane-thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (>1000 J/m2) with hard materials, thus leading to a low ITR of 0.03 mm2·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.

8.
Small ; 19(16): e2207409, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683211

RESUMEN

Elastomers are regarded as one of the best candidates for the matrix material of soft electronics, yet they are susceptible to fracture due to the inevitable flaws generated during applications. Introducing microstructures, sacrificial bonds, and sliding cross-linking has been recognized as an effective way to improve the flaw insensitivity rate (Rinsen ). However, these elastomers still prone to failure under tensile loads with the presence of even small flaws. Here, this work reports a polybutadiene elastomer with unprecedented Rinsen via the synergy of hydrogen bond and entanglement. The resulting polybutadiene elastomer exhibits a Rinsen  ≈1.075, which is much higher than those of reported elastomers. By molecular chain interaction and molecular chain conformation analysis, this work demonstrates that the synergistic effect of hydrogen bond dissociation and entanglement slip in the polybutadiene elastomers during stretching leads to the high Rinsen . Using polybutadiene elastomer as matrix of thermal interface materials, this work demonstrates effective heat transfer for strain sensor and electronic devices. In addition, cytocompatibility of the elastomers is verified by cell proliferation and live/dead viability assays. The combination of outstanding biocompatible and excellent mechanical properties of the elastomers creates new opportunities for their applications in electronic skin.

9.
Phys Chem Chem Phys ; 25(20): 14463-14470, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184830

RESUMEN

New applications of elastomers, such as flexible electronics and soft robotics, have brought great attention to tear resistance since elastomers are prone to shear failure. Most elastomers contain chemical cross-links and entanglements. The effects of both on their mechanical properties have been intensively studied, while how they cope with tearing remains elusive. Here, in polybutadiene elastomers, we find that the energy release rate of tearing (Gtearing), often employed as a measure of tear resistance, is influenced synergistically by chemical cross-linking and entanglements, while its threshold (G0) is only related to the chemical cross-linking. At a low tear speed, the polybutadiene elastomers with low cross-linking density have Gtearing up to 4 times higher than their G0 compared to highly cross-linked ones. Different from conventional reinforcement due to volume dissipation of a polymer network, enhancement of Gtearing significantly depends on the degree of cross-linking. The enhancement of Gtearing at low cross-linking degrees may be related to a novel mechanism, the friction-strengthening phenomenon, which was possibly caused by the pull-out of the chains at a high degree of orientation.

10.
Anal Chem ; 94(28): 10271-10277, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35804490

RESUMEN

Arginine is considered as a biomarker of cystinuria and other diseases, and thus, it is of urgency to develop a simple and rapid method with high sensitivity and selectivity for arginine detection to meet the demand of on-site analysis and bedside diagnosis. In this work, a lanthanide metal-organic framework, La(TATB), was prepared using a triazine-based planar ligand, 4,4',4″-s-triazine-2,4,6-triyltribenzoate (H3TATB), and lanthanide ion (La3+). La(TATB) can be used as a highly photosensitive agent to activate molecular oxygen to 1O2 to achieve efficient photosensitive oxidation of arginine accompanied by strong blue fluorescence emission under 302 nm UV irradiation. Due to the porous structure and high specific surface area of La(TATB), short-life 1O2 can effectively approach and react with amino acid substrate molecules, thus leading to higher sensitivity than other systems. Therefore, the "turn-on" fluorescence sensing of trace arginine can be realized, with a measured linear response range of 10-20,000 nM and a limit of detection as low as 7 nM. This method can be used for the detection of trace arginine in urine, which is conducive to the bedside diagnosis and rapid screening of cystinuria and other diseases. The proposed method not only expands the application scope of Ln-MOFs but also provides a new construction strategy for "turn-on" luminescence sensors.


Asunto(s)
Cistinuria , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Arginina , Humanos , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Estructuras Metalorgánicas/química , Fármacos Fotosensibilizantes , Triazinas
11.
Anal Chem ; 92(2): 2097-2102, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31842541

RESUMEN

Fluoride ion (F-) is one of the most harmful elements in drinking water. Over-intake of F- can result in dental fluorosis, kidney failure, or DNA damage. Therefore, developing affordable, equipment-free, and reliable methods for F- detection is an important goal. In this work, a series of mixed lanthanide metal-organic frameworks were synthesized using a triazine-based planar ligand, 4,4',4″-s-triazine-2,4,6-triyltribenzoate (TATB) and mixed lanthanide ions (Tb3+ and Eu3+). The luminescent color of the Tb/Eu(TATB) can be finely modulated by changing the Tb3+/Eu3+ ratio in the synthesis procedure. Benefiting from the unique host-guest interaction (e.g., Lewis acid-base interaction), between F- and MOF host, a highly selective, sensitive, and reliable fluoride sensor was then developed. Moreover, visual detection of F- was achieved with a smartphone by identifying the RGB value. Drinking water samples were analyzed for F-, and the results obtained by our ratiometric luminescent method were consistent with those by ion chromatographic strategy. This easy-to-use sensor provides reliable detection of F- in everyday applications for nonexpert users, especially in remote rural areas.


Asunto(s)
Fluoruros/análisis , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Estructuras Metalorgánicas/química , Teléfono Inteligente , Aniones/análisis , Agua Potable/química , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes
12.
Anal Chem ; 92(7): 5500-5508, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32141288

RESUMEN

Distinguishing the delicate structural differences among molecules is a critical and challenging task in biological/chemical analysis. A molecular decoding strategy has recently become promising to differentiate similar molecules, which is advantageous over the common sensing methods mostly used for detecting a single target. However, the design of an ideal molecular decoder is still strictly hindered by the tailored preparation of probes for particular molecules and the severe lack of widespread feasibility. We herein for the first time proposed to use single bimetallic lanthanide-based metal-organic frameworks (Ln-MOFs) as a powerful, versatile probe for fast and facile decoding of homologues, isomers, enantiomers, and even deuterated isotopomers, based on the unique host-guest interaction of a specific target with the Ln-MOF which could provide an according visual output based on the modulated energy transfer process.

13.
Nanotechnology ; 31(47): 475709, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32894742

RESUMEN

As the temperature of hot spots increases in electronic devices, thermal management is a key issue for maintaining a device's reliability and performance. The usual approaches of quickly extracting the heat from the hot spots have focused on aligning two-dimensional filler along the in-plane orientation in the polymer matrix. Meanwhile, improving the through-plane thermal conductivity of polymer-based composites is as important as in-plane thermal conductivity. In this study, poly(vinylidene fluoride) composites with three-dimensional continuous thermal conductive pathways of a low melting point alloy (LMPA)/graphene were prepared through a two-step method. Poly(vinylidene fluoride)@graphene (PVDF@Gr) microspheres were firstly prepared by an in-situ water-vapor induced phase separation method. Subsequently, PVDF@Gr/LMPA composites were obtained by hot-pressing after mixing the LMPA with the PVDF@Gr microspheres. Attributed to the unique solid-liquid phase transition advantage of the LMPA and the good matching of the phonon power spectrum between the LMPA and the graphene, the PVDF@4.8Gr/10LMPA composites with 4.8 vol% graphene and 10.0 vol% LMPA exhibited an outstanding in-plane thermal conductivity of 9.41 W m-1 K-1 and through-plane thermal conductivity of 0.35 W m-1 K-1, which was nearly increased by 245% and 130% compared to that of the PVDF@4.8Gr composites, respectively. The enhanced elasticity modulus and reduced thermal expansion coefficient were attributed to the LMPA constructing a three-dimensional continuous thermal conductive pathway along with the graphene and reducing interface thermal resistance. This study offeres a straightforward and repeatable method for fabricating highly thermally conductive polymer composites and widens the application of LMPAs in the fields of thermal management.

14.
Anal Chem ; 91(11): 7001-7006, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31055933

RESUMEN

A miniaturized optical emission spectrometer was constructed with improved point discharge microplasma as an excitation source to enhance sample introduction efficiency and excitation efficiency. By using a hollow electrode as one of the discharge electrodes, analyte-containing chemical vapor yielded via hydride generation was transported and confined into the hollow electrode and subsequently guided into the microplasma with high sample introduction efficiency. Moreover, gaseous analyte species were directly diffused from inside the electrode into the center of the microplasma, instead of traditional external diffusion into the microplasma, resulting in sufficient participation in interactions and excitation in the plasma; thus, high excitation efficiency and stability can be achieved. A 3D-printing technique was used to fabricate some components for compact integration of this spectrometer. Physical characteristics of the microplasma, 3D-printing, and experimental parameters were all investigated to better understand the excitation capability and obtain optimal analytical performance. Under optimized conditions, As, Bi, Ge, Hg, Pb, Sb, Se, and Sn were successfully detected, with detection limits of 2.5, 0.44, 1.6, 0.10, 2.8, 1.5, 31, and 0.24 µg L-1, respectively, and relative standard deviations all less than 4%. It was applied to the analysis of Certified Reference Materials (water, soil, and biological samples) and real water samples with satisfactory results. Because of its advantages of compactness, robustness, easy fabrication, and cost-effectiveness, it has a great prospect as a portable spectrometer for field analytical chemistry.

15.
Small ; 14(13): e1704044, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29392850

RESUMEN

Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm-1 K-1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm-1 K-1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling.

16.
Nanotechnology ; 28(26): 265204, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28498823

RESUMEN

Quantum dots (QDs) have been developed as one of the most promising light-converting materials for white light-emitting diodes (LEDs). In current QD-based LED packaging structures, composites of QDs and polymers are used as light-converting layers. However, the ultralow thermal conductivity of such composites seriously hinders the dissipation of QD-generating heat. In this paper, we demonstrate a method to enhance the thermal dissipation of QD-polymer composites through electrospinning polymer nanofibers. QD-polymer films embedded by electrospun nanofibers were prepared. Benefitting from aligned polymer chains in the electrospun nanofibers, the through-panel and in-panel thermal conductivities of the proposed QD-polymer film increased by 39.9% and 423.1%, respectively, compared to traditional QD-polymer film. The proposed and traditional QD-polymer films were both packaged on chip on board (CoB) LEDs for experimental comparison. Compared to traditional QD-polymer film, the luminous flux and luminous efficiency of the LEDs were increased by up to 51.8% and 42.9% by the proposed QD-polymer film under a current of 800 mA, respectively. With an increase in the driving current from 20-800 mA, the correlated color temperature (CCT) variation decreased by 72.7%. The maximum temperatures in the QD-polymer films were reduced from 419 K-411 K under a driving current of 200 mA.

17.
Small ; 11(46): 6205-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26479262

RESUMEN

Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

18.
Phys Chem Chem Phys ; 17(26): 16709-14, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26068059

RESUMEN

The viscoelasticity of boron nitride nanosheet (BNNS) aerogel has been observed and investigated. It is found that the BNNS aerogel has a high damping ratio (0.2), while it exhibits lightweight and negligible temperature dependence below 180 °C. The creep behavior of the BNNS aerogel markedly demonstrates its strain dependence on stress magnitude and temperature, and can be well simulated by the classical models.

19.
Zhonghua Jie He He Hu Xi Za Zhi ; 37(12): 903-8, 2014 Dec.
Artículo en Zh | MEDLINE | ID: mdl-25609127

RESUMEN

OBJECTIVE: To investigate the relationship between pulmonary arterial and small airway inflammation in smokers with normal lung function and smokers with chronic obstructive pulmonary disease (COPD). METHODS: Patients requiring lung resection for peripheral lung cancer were divided into group A (nonsmokers with normal lung function, n = 10), group B (smokers with normal lung function, n = 13) and group C (smokers with stable COPD, n = 10). Normal pulmonary tissue was obtained more than 5 cm away from cancer lesion. The pathomorphological changes of the pulmonary muscularized arteries (MA) and small airways were observed by HE and Victoria blue-Van Gieson's stains.Lymphocytes infiltrated in the MA and small airways were observed by immunohistochemical methods. The characteristics and the correlations between pulmonary arterial inflammation and small airway inflammation were analyzed. RESULTS: The thickness of MA wall in the three groups was (119 ± 11), (139 ± 25) and (172 ± 28) µm respectively. The total small airway pathology score was (49 ± 10), (101 ± 34) and (163 ± 36) respectively. The score in group B and C was significantly higher than that in group A (P < 0.05), and the thickness of MA wall and total small airway pathology score in group C was significantly higher than that in group B (P < 0.05). The degree of CD(+)(3) T-lymphocytes and CD(+)(8) T-lymphocytes infiltration in the intima, media and adventitia of MA and epithelial layer, lamina propria and adventitia of small airway in group B and C was more significant than that in group A, especially CD(+)(8) T-lymphocytes infiltration in adventitia of MA and small airway (P < 0.05). Expression of CD(+)(4) T-lymphocytes on epithelial layer, lamina propria and adventitia of small airway in group C was higher than that in group A (P < 0.05), but the CD(+)(4)/CD(+)(8) ratio in the whole layer of airway wall declined (P < 0.01). Among three groups, the infiltration of B-lymphocytes in three layers compared each other had no statistical differences (P > 0.05). The infiltration of CD(+)(3)T-lymphocytes and CD(+)(8)T-lymphocytes in the whole layer of MA was positively correlated with the total small airway pathology score respectively (r = 0.431,0.633, P < 0.05), and the degree of CD(+)(3)T-lymphocytes and CD(+)(8)T-lymphocytes infiltration in MA showed positive correlation with that in small airway (r = 0.655,0.725, P < 0.01). The degree of CD(+)(8)T-lymphocytes infiltration in MA and small airway was positively correlated with thickness of MA (r = 0.589,0.556, P < 0.01). CONCLUSIONS: Both in smokers with normal lung function and smokers with stable COPD, CD(+)(8)T-lymphocytes infiltration in the whole layer of pulmonary arteries and small airways is the same kind of inflammation, mainly in the adventitia of pulmonary arteries and small airways. They are a part of pulmonary inflammation in COPD and promote the development of COPD.


Asunto(s)
Inflamación , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Estudios de Casos y Controles , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar
20.
Sci Technol Adv Mater ; 14(6): 065001, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27877621

RESUMEN

We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide-triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young's modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young's modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA