Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(1): 677-688, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38109074

RESUMEN

The abuse of antibiotics leads to an increasing emergence of drug-resistant bacteria, which not only causes a waste of medical resources but also seriously endangers people's health and life safety. Therefore, it is highly desirable to develop an efficient antibacterial strategy to reduce the reliance on traditional antibiotics. Antibacterial photodynamic therapy (aPDT) is regarded as an intriguing antimicrobial method that is less likely to generate drug resistance, but its efficiency still needs to be further improved. Herein, a robust titanium-based metal-organic framework ACM-1 was adopted to support Ag nanoparticles (NPs) to obtain Ag NPs@ACM-1 for boosting antibacterial efficiency via synergistic chemical-photodynamic therapy. Apart from the intrinsic antibacterial nature, Ag NPs largely boost ROS production and thus improve aPDT efficacy. As a consequence, Ag NPs@ACM-1 shows excellent antibacterial activity under visible light illumination, and its minimum bactericidal concentrations (MBCs) against E. coli, S. aureus, and MRSA are as low as 39.1, 39.1, and 62.5 µg mL-1, respectively. Moreover, to expand the practicability of Ag NPs@ACM-1, two (a dense and a loose) Ag NPs@ACM-1 films were readily fabricated by simply dispersing Ag NPs@ACM-1 into heated aqueous solutions of edible agar and sequentially cooling through heating or freeze-drying, respectively. Notably, these two films are mechanically flexible and exhibit excellent antibacterial activities, and their antimicrobial performances can be well retained in their recyclable and remade films. As agar is nontoxic, degradable, inexpensive, and ecosustainable, the dense and loose Ag NPs@ACM-1 films are potent to serve as recyclable and degradable antibacterial plastics and antibacterial dressings, respectively.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Estructuras Metalorgánicas , Fotoquimioterapia , Humanos , Plata/farmacología , Titanio/farmacología , Estructuras Metalorgánicas/farmacología , Staphylococcus aureus , Escherichia coli , Agar , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Inorg Chem ; 58(10): 6983-6992, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31041865

RESUMEN

The restriction of sulfur content in fuels has become increasingly stringent as a result of the growing environmental concerns. Although several MOF-derived materials like POM@MOF composites have shown the ability to catalyze oxidative desulfurization (ODS), their catalytic activities inevitably obstructed by the encapsulated catalytic sites like POM due to the blockage of cavities. Therefore, MOFs with intrinsic and accessible catalytic sites are highly desirable for their applications in ultradeep ODS. Herein, four representative Zr-based MOFs (Zr-MOFs), namely, UiO-66, UiO-67, NU-1000, and MOF-808, were assessed for catalytic ODS. These MOFs were confirmed that they have peroxidase-like activity and can catalyze ODS with H2O2 as oxidant. Among them, MOF-808 showed the highest catalytic activity and it can fully desulfurize dibenzothiophene (DBT) in a model gasoline with a S concentration of 1000 ppm under 40 °C within 5 min. An extremely low apparent Arrhenius activation energy (22.0 KJ·mol-1) and an extraordinarily high TOF value (42.7 h-1) were obtained, ranking MOF-808 among the best catalysts for the catalytic DBT oxidation. Further studies confirmed that the excellent catalytic activity is mainly responsible for the high concentration of the accessible Zr-OH(H2O) catalytic sites decorated in MOF-808. The superoxide radicals (•O2-) and hydroxyl radicals (•OH) were identified and were proved to involve in the DBT oxidation. Besides, the effects of Brönsted and lewis acidity to the catalytic efficiency were also discussed. Based on the experimental results, a plausible mechanism concerning on Zr-OH(H2O) groups promoting the H2O2 decomposion in to both •O2- and •OH was first proposed. Moreover, MOF-808 can be facilely reused for at least eight runs without significant loss of its catalytic activity. By the integration of facile synthesis, high catalytic efficiency, and good stability, MOF-808 thus represents a new benchmark catalyst for catalytic oxidative desulfurization.


Asunto(s)
Estructuras Metalorgánicas/química , Peroxidasas/química , Azufre/química , Circonio/química , Catálisis , Espectroscopía de Resonancia por Spin del Electrón , Calor , Cinética , Microscopía Electrónica de Rastreo , Estructura Molecular , Oxidación-Reducción , Difracción de Polvo , Tiofenos/química
3.
Inorg Chem ; 58(19): 13360-13369, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31503468

RESUMEN

The detection of hypochlorite (ClO-) content in tap water is extremely important because excess amounts of hypochlorite can convert into highly toxic species and inadequate amounts of hypochlorite cannot fully kill bacteria and viruses. Although several metal-organic frameworks (MOFs) have been successfully employed as fluorescent sensors for hypochlorite detection, all these sensors are based on single emission that responds to the dose of hypochlorite. Ratiometric sensors are highly desirable, which can improve the sensitivity, accuracy, and reliability via self-calibration. Herein, a nanoscale dual-emission multivariate 5-5-Eu/BPyDC@MOF-253-NH2 was synthesized by sequential mixed-ligand self-assembly and postsynthesis method. Among the two emission bands of 5-5-Eu/BPyDC@MOF-253-NH2, the strong blue emitting derived from ligands is sensitive to hypochlorite, while the red emitting derived from Eu(III) almost keeps invariable. Therefore, 5-5-Eu/BPyDC@MOF-253-NH2 was exploited as a fluorescent ratiometric nanosensor for "on-off" sensing of hypochlorite. Notably, the proposed sensing system showed an excellent performance including fast response (within 15 s), relative high specificity, wide linear range (0.1-30 µM), and low detection limit (0.094 µM). Besides, the suppressed blue emitting was recovered after the addition of ascorbic acid (AA) that consumes ClO- via the redox reaction. Therefore, 5-5-Eu/BPyDC@MOF-253-NH2 was further employed as a fluorescent ratiometric nanosensor for the "on-off-on" sensing of AA. This work represents the first MOF-based fluorescent "switch" for the ratiometric sensing of hypochlorite and the second for ratiometric sensing of AA.

4.
Dalton Trans ; 49(28): 9680-9687, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32613985

RESUMEN

Hypochlorite (ClO-) is widely used as a disinfectant, whose residue content in water should be strictly controlled due to the potential threat to human health in an inappropriate concentration. Herein, dual-emissive metal-organic frameworks with a UiO-66 prototype structure, PDA/Eu/PDA-UiO-66-NH2(x), were elegantly designed and prepared by a mixed ligand assembly and sequential post-synthesis strategy. Since blue emission is sensitive to ClO-, PDA/Eu/PDA-UiO-66-NH2(40) was selected as a model nanosensor for ratiometric and turn-on sensing of ClO- while red emission acts as a reference signal. Remarkably, PDA/Eu/PDA-UiO-66-NH2(40) shows high efficiency and specificity toward ClO- detection, as verified by a very short response time of 15 s, a wide linear range of 0.1-60 µM, a low detection limit of 0.10 µM, and excellent selectivity toward common competing ions. The recovery experiments show that the recoveries of spiking ClO- in tap water range from 96 to 103%. The rigidification of the coordinated H2N-BDC2- ligands should be responsible for the turn-on fluorescence of PDA/Eu/PDA-UiO-66-NH2(40). This work not only shows a highly efficient and specific fluorescent nanosensor for ClO- detection but also presents the first MOF-based fluorescent probe for turn-on and ratiometric sensing of ClO-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA