Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821590

RESUMEN

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Macaca fascicularis , Porcinos , Trasplante Heterólogo , Animales , Humanos , Animales Modificados Genéticamente , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/métodos , Polisacáridos/deficiencia , Porcinos/genética , Trasplante Heterólogo/métodos , Transgenes/genética
2.
Mol Cell ; 81(22): 4574-4576, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34798043

RESUMEN

Gopalan et al. (2021) present multi-CUT&Tag, a modification of cleavage under targets and tagmentation (CUT&Tag) that enables simultaneous genome-wide mapping of multiple chromatin-associated targets in a single sample.


Asunto(s)
Cromatina , Cromatina/genética , Inmunoprecipitación de Cromatina , Mapeo Cromosómico
3.
Genes Dev ; 32(17-18): 1252-1265, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108132

RESUMEN

The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/fisiología , Complejo Mediador/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Activación Transcripcional , Acetilación , Histonas/metabolismo , Complejo Mediador/metabolismo , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética
4.
PLoS Genet ; 17(8): e1009529, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383744

RESUMEN

The Mediator coactivator complex is divided into four modules: head, middle, tail, and kinase. Deletion of the architectural subunit Med16 separates core Mediator (cMed), comprising the head, middle, and scaffold (Med14), from the tail. However, the direct global effects of tail/cMed disconnection are unclear. We find that rapid depletion of Med16 downregulates genes that require the SAGA complex for full expression, consistent with their reported tail dependence, but also moderately overactivates TFIID-dependent genes in a manner partly dependent on the separated tail, which remains associated with upstream activating sequences. Suppression of TBP dynamics via removal of the Mot1 ATPase partially restores normal transcriptional activity to Med16-depleted cells, suggesting that cMed/tail separation results in an imbalance in the levels of PIC formation at SAGA-requiring and TFIID-dependent genes. We propose that the preferential regulation of SAGA-requiring genes by tailed Mediator helps maintain a proper balance of transcription between these genes and those more dependent on TFIID.


Asunto(s)
Adenosina Trifosfatasas/genética , Perfilación de la Expresión Génica/métodos , Complejo Mediador/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Transactivadores , Transcripción Genética
5.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39162172

RESUMEN

CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of CRISPR-based (clustered regularly interspaced short palindromic repeats) genome-editing tools and methodologies are dependent upon direct experimentation. One useful technique is Cas9-dependent homologous recombination, which is a critical tool for studying gene function but also for developing pest related applications like gene drive. Here, we report our attempts to induce Cas9 homology directed repair (HDR) and subsequent gene drive in Tribolium castaneum (Herbst; Insecta: Coleoptera: Tenebrionidae). Utilizing constructs containing 1 or 2 target gRNAs in combination with Cas9 under 2 different promoters and corresponding homology arms, we found a high incidence of CRISPR/Cas9 induced mutations but no evidence of homologous recombination. Even though the generated constructs provide new resources for CRISPR/Cas9 modification of the Tribolium genome, our results suggest that additional modifications and increased sample sizes will be necessary to increase the potential and detection for HDR of the Tribolium genome.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Tribolium , Tribolium/genética , Animales , Edición Génica/métodos , Reparación del ADN por Recombinación , Tecnología de Genética Dirigida/métodos
6.
Genome Res ; 30(6): 910-923, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32660958

RESUMEN

Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation. However, current protocols for genome-wide TSS profiling are laborious and/or expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and reaction cleanups, a STRIPE-seq library can be constructed in about 5 h. We show application of STRIPE-seq to TSS profiling in yeast and human cells and show that it can also be effectively used for quantification of transcript levels and analysis of differential gene expression. In conjunction with our ready-to-use computational workflows, STRIPE-seq is a straightforward, efficient means by which to probe the landscape of transcriptional initiation.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Iniciación de la Transcripción Genética , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN/métodos , Sitio de Iniciación de la Transcripción , Levaduras/genética
7.
Proc Natl Acad Sci U S A ; 117(4): 2020-2031, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31937660

RESUMEN

The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Neoplasias/metabolismo , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genoma Humano , Humanos , Unión Proteica , Dominios Proteicos , Células Tumorales Cultivadas , Cohesinas
8.
Insect Mol Biol ; 31(5): 543-550, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35429082

RESUMEN

CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing efficiency. We address this by creating and testing transgenic beetles expressing Cas9. We generated two different constructs bearing basal heat shock promoter-driven Cas9, two distinct 3' UTRs, and one containing Cas9 fused to EGFP by a T2A peptide. Analyses of Cas9 activity in each transgenic line demonstrated that both designs are capable of inducing CRISPR- mediated changes in the genome in the absence of heat induction. Overall, these resources enhance the accessibility of CRISPR/Cas9 genome editing for the Tribolium research community and provide a benchmark against which to compare future transgenic Cas9 lines.


Asunto(s)
Tribolium , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edición Génica , Tribolium/genética
9.
PLoS Genet ; 15(7): e1008253, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291240

RESUMEN

Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Endorreduplicación , Animales , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Perfilación de la Expresión Génica , Mitosis , Poliploidía , Proteínas Proto-Oncogénicas c-myb/metabolismo
10.
J Physiol ; 599(13): 3363-3384, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33913170

RESUMEN

KEY POINTS: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT: Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.


Asunto(s)
Epigénesis Genética , Ribosomas , Animales , Humanos , Hipertrofia/metabolismo , Ratones , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
11.
EMBO J ; 35(22): 2435-2446, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27797823

RESUMEN

Mediator is a conserved, essential transcriptional coactivator complex, but its in vivo functions have remained unclear due to conflicting data regarding its genome-wide binding pattern obtained by genome-wide ChIP Here, we used ChEC-seq, a method orthogonal to ChIP, to generate a high-resolution map of Mediator binding to the yeast genome. We find that Mediator associates with upstream activating sequences (UASs) rather than the core promoter or gene body under all conditions tested. Mediator occupancy is surprisingly correlated with transcription levels at only a small fraction of genes. Using the same approach to map TFIID, we find that TFIID is associated with both TFIID- and SAGA-dependent genes and that TFIID and Mediator occupancy is cooperative. Our results clarify Mediator recruitment and binding to the genome, showing that Mediator binding to UASs is widespread, partially uncoupled from transcription, and mediated in part by TFIID.


Asunto(s)
ADN de Hongos/metabolismo , Complejo Mediador/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética , Inmunoprecipitación de Cromatina , Unión Proteica
12.
Nat Rev Genet ; 15(12): 814-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297728

RESUMEN

The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.


Asunto(s)
Cromatina/genética , Epigenómica/métodos , Animales , Cromatina/metabolismo , Huella de ADN/métodos , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Nucleosomas/metabolismo , Transcripción Genética
13.
Bioessays ; 39(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28863233

RESUMEN

Gene drives are selfish genetic elements that use a variety of mechanisms to ensure they are transmitted to subsequent generations at greater than expected frequencies. Synthetic gene drives based on the clustered regularly interspersed palindromic repeats (CRISPR) genome editing system have been proposed as a way to alter the genetic characteristics of natural populations of organisms relevant to the goals of public health, conservation, and agriculture. Here, we review the principles and potential applications of CRISPR drives, as well as means proposed to prevent their uncontrolled spread. We also focus on recent work suggesting that factors such as natural genetic variation and inbreeding may represent substantial impediments to the propagation of CRISPR drives.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Endonucleasas/metabolismo , Ingeniería Genética/métodos , Terapia Genética
14.
Genome Res ; 25(3): 381-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25491770

RESUMEN

Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.


Asunto(s)
Genoma Fúngico , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Saccharomycetales/genética , Saccharomycetales/metabolismo , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Genómica/métodos , Histonas/metabolismo , Nucleasa Microcócica/metabolismo
15.
Nat Methods ; 11(2): 203-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336359

RESUMEN

Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. TF profiling is commonly carried out by formaldehyde cross-linking and sonication followed by chromatin immunoprecipitation (X-ChIP). We describe a method to profile TF binding at high resolution without cross-linking. We begin with micrococcal nuclease-digested non-cross-linked chromatin and then perform affinity purification of TFs and paired-end sequencing. The resulting occupied regions of genomes from affinity-purified naturally isolated chromatin (ORGANIC) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide high-resolution maps that are accurate, as defined by the presence of known TF consensus motifs in identified binding sites, that are not biased toward accessible chromatin and that do not require input normalization. We profiled Drosophila melanogaster GAGA factor and Pipsqueak to test ORGANIC performance on larger genomes. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Biología Computacional , Drosophila melanogaster/metabolismo , Genoma Fúngico , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Cromatina/genética , Huella de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
16.
PLoS Genet ; 9(2): e1003317, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468649

RESUMEN

ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, Saccharomyces cerevisiae ISWI and CHD remodelers require ∼30-85 bp of extranucleosomal DNA to reposition nucleosomes, but linker DNA in S. cerevisiae averages <20 bp. To address this discrepancy between in vitro and in vivo observations, we have mapped the genomic distributions of the yeast Isw1, Isw2, and Chd1 remodelers at base-pair resolution on native chromatin. Although these remodelers act in gene bodies, we find that they are also highly enriched at nucleosome-depleted regions (NDRs), where they bind to extended regions of DNA adjacent to particular transcription factors. Surprisingly, catalytically inactive remodelers show similar binding patterns. We find that remodeler occupancy at NDRs and gene bodies is associated with nucleosome turnover and transcriptional elongation rate, suggesting that remodelers act on regions of transient nucleosome unwrapping or depletion within gene bodies subsequent to transcriptional elongation.


Asunto(s)
Adenosina Trifosfatasas , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética
17.
Dev Biol ; 382(1): 57-69, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23920116

RESUMEN

CHARGE syndrome is a sporadic autosomal-dominant genetic disorder characterized by a complex array of birth defects so named for its cardinal features of ocular coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Approximately two-thirds of individuals clinically diagnosed with CHARGE syndrome have heterozygous loss-of-function mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7), an ATP-dependent chromatin remodeler. To examine the role of Chd7 in development, a zebrafish model was generated through morpholino (MO)-mediated targeting of the zebrafish chd7 transcript. High doses of chd7 MO induce lethality early in embryonic development. However, low dose-injected embryos are viable, and by 4 days post-fertilization, morphant fish display multiple defects in organ systems analogous to those affected in humans with CHARGE syndrome. The chd7 morphants show elevated expression of several potent cell-cycle inhibitors including ink4ab (p16/p15), p21 and p27, accompanied by reduced cell proliferation. We also show that Chd7 is required for proper organization of neural crest-derived craniofacial cartilage structures. Strikingly, MO-mediated knockdown of the jumonji domain-containing histone demethylase fbxl10/kdm2bb, a repressor of ribosomal RNA (rRNA) genes, rescues cell proliferation and cartilage defects in chd7 morphant embryos and can lead to complete rescue of the CHARGE syndrome phenotype. These results indicate that CHARGE-like phenotypes in zebrafish can be mitigated through modulation of fbxl10 levels and implicate FBXL10 as a possible therapeutic target in CHARGE syndrome.


Asunto(s)
Síndrome CHARGE/patología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Técnicas de Silenciamiento del Gen , Histona Demetilasas con Dominio de Jumonji/metabolismo , Morfolinos/farmacología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Síndrome CHARGE/metabolismo , Cartílago/efectos de los fármacos , Cartílago/embriología , Cartílago/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Proteínas F-Box/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Datos de Secuencia Molecular , Cresta Neural/efectos de los fármacos , Cresta Neural/embriología , Cresta Neural/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Genome Res ; 21(8): 1273-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21632746

RESUMEN

Epigenetic regulation of gene enhancer elements is important for establishing and maintaining the identity of cells. Gene enhancer elements are thought to exist in either active or poised states distinguishable by chromatin features, but a complete understanding of the regulation of enhancers is lacking. Here, by using mouse embryonic stem cells and their differentiated derivatives, as well as terminally differentiated cells, we report the coexistence of multiple, defined classes of enhancers that serve distinct cellular functions. Specifically, we found that active enhancers can be subclassified based on varying levels of H3K4me1, H3K27ac, and H3K36me3 and the pSer2/5 forms of RNA polymerase II. The abundance of these histone modifications positively correlates with the expression of associated genes and cellular functions consistent with the identity of the cell type. Poised enhancers can also be subclassified based on presence or absence of H3K27me3 and H3K9me3, conservation, genomic location, expression levels of associated genes, and predicted function of associated genes. These findings not only refine the repertoire of histone modifications at both active and poised gene enhancer elements but also raise the possibility that enhancers associated with distinct cellular functions are partitioned based on specific combinations of histone modifications.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Animales , Diferenciación Celular , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Estratos Germinativos/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
19.
Genome Res ; 21(7): 1065-73, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21507882

RESUMEN

Although central to many studies of phenotypic variation and disease susceptibility, characterizing the genetic architecture of complex traits has been unexpectedly difficult. For example, most of the susceptibility genes that contribute to highly heritable conditions such as obesity and type 2 diabetes (T2D) remain to be identified despite intensive study. We took advantage of mouse models of diet-induced metabolic disease in chromosome substitution strains (CSSs) both to characterize the genetic architecture of diet-induced obesity and glucose homeostasis and to test the feasibility of gene discovery. Beginning with a survey of CSSs, followed with genetic and phenotypic analysis of congenic, subcongenic, and subsubcongenic strains, we identified a remarkable number of closely linked, phenotypically heterogeneous quantitative trait loci (QTLs) on mouse chromosome 6 that have unexpectedly large phenotypic effects. Although fine-mapping reduced the genomic intervals and gene content of these QTLs over 3000-fold, the average phenotypic effect on body weight was reduced less than threefold, highlighting the "fractal" nature of genetic architecture in mice. Despite this genetic complexity, we found evidence for 14 QTLs in only 32 recombination events in less than 3000 mice, and with an average of four genes located within the three body weight QTLs in the subsubcongenic strains. For Obrq2a1, genetic and functional studies collectively identified the solute receptor Slc35b4 as a regulator of obesity, insulin resistance, and gluconeogenesis. This work demonstrated the unique power of CSSs as a platform for studying complex genetic traits and identifying QTLs.


Asunto(s)
Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homeostasis/genética , Proteínas de Transporte de Nucleótidos/genética , Obesidad/genética , Sitios de Carácter Cuantitativo , Animales , Peso Corporal/genética , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Diabetes Mellitus Tipo 2/genética , Dieta , Regulación de la Expresión Génica , Gluconeogénesis/genética , Células Hep G2 , Humanos , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Congénicos , Modelos Animales , Proteínas de Transporte de Nucleótidos/metabolismo , Fenotipo , Análisis de Secuencia de ADN
20.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895259

RESUMEN

Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA