Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(1): 240-254, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37669322

RESUMEN

A common pathological denominator of various neurodegenerative diseases is the accumulation of protein aggregates. Neurotoxic effects are caused by a loss of the physiological activity of the aggregating protein and/or a gain of toxic function of the misfolded protein conformers. In transmissible spongiform encephalopathies or prion diseases, neurodegeneration is caused by aberrantly folded isoforms of the prion protein (PrP). However, it is poorly understood how pathogenic PrP conformers interfere with neuronal viability. Employing in vitro approaches, cell culture, animal models and patients' brain samples, we show that misfolded PrP can induce aggregation and inactivation of TAR DNA-binding protein-43 (TDP-43). Purified PrP aggregates interact with TDP-43 in vitro and in cells and induce the conversion of soluble TDP-43 into non-dynamic protein assemblies. Similarly, mislocalized PrP conformers in the cytosol bind to and sequester TDP-43 in cytosolic aggregates. As a consequence, TDP-43-dependent splicing activity in the nucleus is significantly decreased, leading to altered protein expression in cells with cytosolic PrP aggregates. Finally, we present evidence for cytosolic TDP-43 aggregates in neurons of transgenic flies expressing mammalian PrP and Creutzfeldt-Jakob disease patients. Our study identified a novel mechanism of how aberrant PrP conformers impair physiological pathways by cross-seeding.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Animales , Humanos , Proteínas de Unión al ADN , Mamíferos/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas , Priones/metabolismo
2.
Neuropathol Appl Neurobiol ; 50(1): e12964, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374702

RESUMEN

AIMS: Tau is a key player in Alzheimer's disease (AD) and other Tauopathies. Tau pathology in the brain directly correlates with neurodegeneration in AD. The recent identification of a rapid variant of AD demands an urgent need to uncover underlying mechanisms leading to differential progression in AD. Accordingly, we aimed to dissect the underlying differential mechanisms of toxicity associated with the Tau protein in AD subtypes and to find out subtype-dependent biomarkers and therapeutic targets. METHODS: To identify and characterise subtype-specific Tau-associated mechanisms of pathology, we performed comparative interactome mapping of Tau protein in classical AD (cAD) and rapidly progressive AD (rpAD) cases using co-immunoprecipitation coupled with quantitative mass spectrometry. The mass spectrometry data were extensively analysed using several bioinformatics approaches. RESULTS: The comparative interactome mapping of Tau protein revealed distinct and unique interactors (DPYSL4, ARHGEF2, TUBA4A and UQCRC2) in subtypes of AD. Interestingly, an analysis of the Tau-interacting proteins indicated enrichment of mitochondrial organisation processes, including negative regulation of mitochondrion organisation, mitochondrial outer membrane permeabilisation involved in programmed cell death, regulation of autophagy of mitochondrion and necroptotic processes, specifically in the rpAD interactome. While, in cAD, the top enriched processes were related to oxidation-reduction process, transport and monocarboxylic acid metabolism. CONCLUSIONS: Overall, our results provide a comprehensive map of Tau-interacting protein networks in a subtype-dependent manner and shed light on differential functions/pathways in AD subtypes. This comprehensive map of the Tau-interactome has provided subsets of disease-related proteins that can serve as novel biomarkers/biomarker panels and new drug targets.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/patología , Encéfalo/patología , Biomarcadores , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
3.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980441

RESUMEN

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas , Humanos , Proteína ADAM10/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Proteínas Priónicas/metabolismo , Proteínas de la Membrana/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Anticuerpos
4.
Brain Behav Immun ; 117: 399-411, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309639

RESUMEN

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Autoinmunidad , Encefalitis , Enfermedad de Hashimoto , Animales , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Autoanticuerpos , Convulsiones , Mamíferos , Canal de Potasio Kv.1.2
5.
Neuroepidemiology ; 58(1): 64-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38086343

RESUMEN

BACKGROUND: Recent case studies and media outlets have hypothesised an effect of SARS-CoV-2 infection and immunisation on the development or progression of neurodegenerative diseases such as Alzheimer's disease or sporadic Creutzfeldt-Jakob disease (sCJD). OBJECTIVES: This study aims to identify potential associations of SARS-CoV-2 infections and SARS-CoV-2 immunisation with sCJD incidence, disease duration, and age of onset. METHOD: We used data from a prospective sCJD surveillance study in Germany (2016-2022) and publicly available datasets of SARS-CoV-2 cases and vaccination numbers in Germany for the years 2020-2022. Associations of SARS-CoV-2 incidence and immunisation rates with sCJD incidence were assessed by comparing quarterly and annual cumulative sCJD incidences in the periods before (2016-2019) and during the pandemic (2020-2022). RESULTS: We could not identify any time-related effect of SARS-CoV-2 incidence or immunisation rate on the sCJD incidence. Moreover, we did not find any sCJD incidence alterations before and during the SARS-CoV-2 pandemic on a federal or state level. The overall sCJD incidence was within expected ranges in the years 2020-2022. There were no changes in age of onset and clinical disease duration in these years. CONCLUSIONS: We found no evidence supporting a short-term effect of the pandemic on sCJD incidence. However, considering the extended pre-clinical phase of sCJD, continued surveillance is needed to identify potential future incidence alterations.


Asunto(s)
COVID-19 , Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/epidemiología , Síndrome de Creutzfeldt-Jakob/prevención & control , Incidencia , SARS-CoV-2 , Estudios Prospectivos , COVID-19/epidemiología , COVID-19/prevención & control , Inmunización , Vacunación
6.
Brain ; 146(5): 1932-1949, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346134

RESUMEN

Autoimmune neuropathy associated with antibodies against pan-neurofascin is a new subtype of nodo-paranodopathy. It is relevant because it is associated with high morbidity and mortality. Affected patients often require intensive care unit treatment for several months, and data on the reversibility and long-term prognosis are limited. The pathogenicity including IgG subclass-associated mechanisms has not been unravelled, nor directly compared to anti-neurofascin-155 IgG4-related pathology. Understanding the underlying pathology might have a direct impact on treatment of these severely affected patients. By a multicentre combined prospective and retrospective approach, we provide clinical data of a large cohort of patients with anti-neurofascin-associated neuropathy (n = 18) including longitudinal titre and neurofilament light chain assessment via Ella® and relate clinical data to in vitro pathogenicity studies of anti-neurofascin antibodies. We assessed antibody binding characteristics and the pathogenic effects of anti-pan-neurofascin versus neurofascin-155 antibodies on living myelinating dorsal root ganglia co-cultures. Additionally, we analysed the IgG subclass profile and the complement binding capacity and effector functions considering the effects of intravenous immunoglobulin preparations via enzyme-linked immunosorbent and cell-based assays. In contrast to chronic neurofascin-155 IgG4-associated neuropathy, anti-pan-neurofascin-associated disease presented with a high morbidity and mortality, but as a monophasic and potentially reversible disorder. During follow-up, antibodies were no longer detectable in 8 of 11 patients. Anti-pan-neurofascin had direct access to the nodes of Ranvier in myelinating cultures titre-dependently, most probably inducing this severe phenotype. Antibody preincubation led to impaired paranode formation, destruction of paranodal architecture and alterations on paranodal myelin and sensory neurons in the cultures, with more severe effects than neurofascin-155 antibodies. Besides IgG4, subclass IgG3 was detected and associated with complement binding and cytotoxic effects in vitro. As a possible correlate of axonal damage in vivo, we detected highly increased serum neurofilament light chain levels (sNF-L), correlating to serum C3a. Still, sNF-L was not identified as a marker for poor prognosis, but rather as an intra- and interindividual marker for acuteness, severity and course, with a strong decrease during recovery. Our data provide evidence that anti-pan-neurofascin antibodies directly attack the node and induce severe and acute, but potentially reversible, nodo-paranodal pathology, possibly involving complement-mediated mechanisms. Screening for autoantibodies thus is crucial to identify this subset of patients who benefit from early antibody-depleting therapy. Titre and sNF-L might serve as valuable follow-up parameters. The prospect of a favourable outcome has high relevance for physicians, patients and relatives during months of critical care.


Asunto(s)
Moléculas de Adhesión Celular , Factores de Crecimiento Nervioso , Autoanticuerpos , Activación de Complemento , Inmunoglobulina G/farmacología , Estudios Prospectivos , Estudios Retrospectivos
7.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-38503894

RESUMEN

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Encefalopatía Espongiforme Bovina , Enfermedad de Gerstmann-Straussler-Scheinker , Enfermedades por Prión , Animales , Bovinos , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Encéfalo/patología , Encefalopatía Espongiforme Bovina/patología
8.
Cell Tissue Res ; 392(1): 301-306, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36536226

RESUMEN

The development of the real-time quaking-induced conversion (RT-QuIC), an in vitro protein misfolding amplification assay, was an innovation in the scientific field of protein misfolding diseases. In prion diseases, these types of assays imitate the pathological conversion of the cellular prion protein (PrPC) into a protease-resistant and/or amyloid form of PrP, called PrP resistant (PrPRes). The RT-QuIC is an automatic assay system based on real-time measuring of thioflavin-T (Th-T) incorporation into amyloid fibrils using shaking for disaggregation. It has already been applied in diagnostics, drug pre-screening, and to distinguish between different prion strains. The seeded conversion efficiency and the diagnostic accuracy of the RT-QuIC assay strongly depend on the kind of recombinant PrP (rec PrP) substrate. The DNA sequences of different substrates may originate from different species, such as human, bank vole, and hamster, or from a combination of two species, e.g., hamster-sheep chimera. In routine use, either full-length (FL) or truncated substrates are applied which can accelerate the conversion reaction, e.g., to a more sensitive version of RT-QuIC assay. In the present review, we provide an overview on the different types of PrP substrates (FL and truncated forms), recapitulate the production and purification process of different rec PrP substrates, and discuss the diagnostic value of CSF RT-QuIC in human prion disease diagnostics.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Cricetinae , Humanos , Animales , Ovinos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Priones/metabolismo , Proteínas Priónicas/metabolismo
9.
J Biol Inorg Chem ; 28(2): 235-247, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695886

RESUMEN

This study aims at the synthesis and initial biological evaluation of novel rhenium-tricarbonyl complexes of 3,3',4',5,7-pentahydroxyflavone (quercetin), 3,7,4΄-trihydroxyflavone (resokaempferol), 5,7-dihydroxyflavone (chrysin) and 4΄,5,7-trihydroxyflavonone (naringenin) as neuroprotective and anti-PrP agents. Resokaempferol was synthesized from 2,2΄,4-trihydroxychalcone by H2O2/NaOH. The rhenium-tricarbonyl complexes of the type fac-[Re(CO)3(Fl)(sol)] were synthesized by reacting the precursor fac-[Re(CO)3(sol)3]+ with an equimolar amount of the flavonoids (Fl) quercetin, resokaempferol, chrysin and naringenin and the solvent (sol) was methanol or water. The respective Re-flavonoid complexes were purified by semi-preparative HPLC and characterized by spectroscopic methods. Furthermore, the structure of Re-chrysin was elucidated by X-ray crystallography. Initial screening of the neuroprotective properties of these compounds included the in vitro assessment of the antioxidant properties by the DPPH assay as well as the anti-lipid peroxidation of linoleic acid in the presence of AAPH and their ability to inhibit soybean lipoxygenase. From the above studies, it was concluded that the complexes' properties are mainly correlated with the structural characteristics and the presence of the flavonoids. The flavonoids and their respective Re-complexes were also tested in vitro for their ability to inhibit the formation and aggregation of the amyloid-like abnormal prion protein, PrPSc, by employing the real-time quaking-induced conversion assay with recombinant PrP seeded with cerebrospinal fluid from patients with Creutzfeldt-Jakob disease. All the compounds blocked de novo abnormal PrP formation and aggregation.


Asunto(s)
Antioxidantes , Flavonoides , Proteínas PrPSc , Renio , Humanos , Antioxidantes/farmacología , Cristalografía por Rayos X , Peróxido de Hidrógeno , Quercetina , Renio/química , Flavonoides/química , Flavonoides/farmacología , Proteínas PrPSc/efectos de los fármacos , Proteínas PrPSc/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología
10.
Brain ; 145(2): 700-712, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35288744

RESUMEN

Genetic prion diseases are a rare and diverse group of fatal neurodegenerative disorders caused by pathogenic sequence variations in the prion protein gene, PRNP. Data on CSF biomarkers in patients with genetic prion diseases are limited and conflicting results have been reported for unclear reasons. Here, we aimed to analyse the diagnostic accuracy of CSF biomarkers currently used in prion clinical diagnosis in 302 symptomatic genetic prion disease cases from 11 prion diagnostic centres, encompassing a total of 36 different pathogenic sequence variations within the open reading frame of PRNP. CSF samples were assessed for the surrogate markers of neurodegeneration, 14-3-3 protein (14-3-3), total-tau protein (t-tau) and α-synuclein and for prion seeding activity through the real-time quaking-induced conversion assay. Biomarker results were compared with those obtained in healthy and neurological controls. For the most prevalent PRNP pathogenic sequence variations, biomarker accuracy and associations between biomarkers, demographic and genetic determinants were assessed. Additionally, the prognostic value of biomarkers for predicting total disease duration from symptom onset to death was investigated. High sensitivity of the four biomarkers was detected for genetic Creutzfeldt-Jakob disease associated with the E200K and V210I mutations, but low sensitivity was observed for mutations associated with Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. All biomarkers showed good to excellent specificity using the standard cut-offs often used for sporadic Creutzfeldt-Jakob disease. In genetic prion diseases related to octapeptide repeat insertions, the biomarker sensitivity correlated with the number of repeats. New genetic prion disease-specific cut-offs for 14-3-3, t-tau and α-synuclein were calculated. Disease duration in genetic Creutzfeldt-Jakob disease-E200K, Gerstmann-Sträussler-Scheinker-P102L and fatal familial insomnia was highly dependent on PRNP codon 129 MV polymorphism and was significantly associated with biomarker levels. In a large cohort of genetic prion diseases, the simultaneous analysis of CSF prion disease biomarkers allowed the determination of new mutation-specific cut-offs improving the discrimination of genetic prion disease cases and unveiled genetic prion disease-specific associations with disease duration.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Insomnio Familiar Fatal , Enfermedades por Prión , Priones , Biomarcadores/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Insomnio Familiar Fatal/genética , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Priones/genética , alfa-Sinucleína
11.
Alzheimers Dement ; 19(4): 1152-1163, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35876563

RESUMEN

INTRODUCTION: It remains unknown whether the global small vessel disease (SVD) burden predicts post-stroke outcomes. METHODS: In a prospective multicenter study of 666 ischemic and hemorrhagic stroke patients, we quantified magnetic resonance imaging (MRI)-based SVD markers (lacunes, white matter hyperintensities, microbleeds, perivascular spaces) and explored associations with 6- and 12-month cognitive (battery of 15 neuropsychological tests) and functional (modified Rankin scale) outcomes. RESULTS: A global SVD score (range 0-4) was associated with cognitive impairment; worse performance in executive function, attention, language, and visuospatial ability; and worse functional outcome across a 12-month follow-up. Although the global SVD score did not improve prediction, individual SVD markers, assessed across their severity range, improved the calibration, discrimination, and reclassification of predictive models including demographic, clinical, and other imaging factors. DISCUSSION: SVD presence and severity are associated with worse cognitive and functional outcomes 12 months after stroke. Assessing SVD severity may aid prognostication for stroke patients. HIGHLIGHTS: In a multi-center cohort, we explored associations of small vessel disease (SVD) burden with stroke outcomes. SVD burden associates with post-stroke cognitive and functional outcomes. A currently used score of SVD burden does not improve the prediction of poor outcomes. Assessing the severity of SVD lesions adds predictive value beyond known predictors. To add predictive value in assessing SVD in stroke patients, SVD burden scores should integrate lesion severity.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Disfunción Cognitiva/complicaciones , Imagen por Resonancia Magnética , Cognición
12.
Neurol Neurochir Pol ; 57(2): 198-205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36727548

RESUMEN

INTRODUCTION: Steroid-responsive encephalopathy in autoimmune thyroiditis (SREAT) is characterised by a wide range of neuropsychiatric symptoms and elevated thyroid antibodies. SREAT can mimic sporadic Creutzfeldt-Jakob disease (sCJD) and distinguishing between both entities is important because SREAT responds to corticosteroids. MATERIAL AND METHODS: Data of patients reported to the National Reference Centre for the Surveillance of CJD in Göttingen, Germany between August 1994 and October 2008 was retrospectively reviewed. In the case and control groups, 49 patients had SREAT and 48 had sCJD with elevated thyroid antibodies. RESULTS: Antibodies against thyroid peroxidase were the most common antibodies in both SREAT (86%) and sCJD (88%), followed by antibodies against thyroglobulin (SREAT, 63.3%; sCJD, 39.6%; p = 0.020) and TSH-receptor-antibodies (SREAT, 14.3%; sCJD, 2.1%; p = 0.059). Epileptic seizures were observed more frequently in the SREAT group (SREAT, 44.9%; sCJD, 12.5%; p < 0.001). Dementia (SREAT, 61.2%; sCJD, 100%; p < 0.001), ataxia (SREAT, 44.9%; sCJD, 89.6%; p < 0.001), visual impairment (SREAT, 22.4%; sCJD, 50%; p = 0.005), extrapyramidal disorder (SREAT, 32.7%; sCJD, 60.4%; p = 0.006), myoclonus (SREAT, 38.8%; sCJD, 81.3%; p < 0.001) and akinetic mutism (SREAT, 6.1%; sCJD, 37.5%; p < 0.001) were observed more frequently in sCJD. Cerebrospinal fluid (CSF) pleocytosis was observed more frequently in SREAT patients (SREAT, 33.3%; sCJD, 6.4%; p = 0.001), as was a pathological increase in protein concentration (SREAT, 68.8%; sCJD, 36.2%; p = 0.001). CONCLUSIONS: In a case of encephalopathy, the diagnosis of SREAT should also be considered in suspected cases of CJD so as to be able to start corticosteroid treatment quickly.


Asunto(s)
Encefalopatías , Síndrome de Creutzfeldt-Jakob , Enfermedad de Hashimoto , Tiroiditis Autoinmune , Humanos , Tiroiditis Autoinmune/diagnóstico , Síndrome de Creutzfeldt-Jakob/diagnóstico , Diagnóstico Diferencial , Estudios Retrospectivos , Encefalopatías/diagnóstico , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/tratamiento farmacológico , Esteroides
13.
Mov Disord ; 37(1): 39-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448510

RESUMEN

BACKGROUND: The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES: We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS: We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS: Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION: PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Péptidos beta-Amiloides , Animales , Ratones , Proteínas Priónicas , Proteómica , alfa-Sinucleína/metabolismo
14.
Eur J Neurol ; 29(6): 1841-1846, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35212083

RESUMEN

BACKGROUND AND PURPOSE: Fatal familial insomnia is a rare hereditary prion disease associated with the D178N-129M PRNP mutation. Early diagnosis is difficult, because the clinical syndrome may overlap with affective disorders. In addition, most known cerebrospinal fluid biomarkers for prion diseases and magnetic resonance imaging do not show a good diagnostic accuracy for fatal familial insomnia. In this context, data on plasma biomarkers are scarce. METHODS: We analyzed levels of neurofilament light chain, glial fibrillary acidic protein, chitinase-3-like protein 1, calcium-binding protein B, and total tau protein in six serial plasma samples from a patient with fatal familial insomnia. Subsequently, plasma neurofilament light chain was analyzed in n = 25 patients and n = 19 controls. The diagnostic accuracy and associations with disease stage and duration were explored. RESULTS: Among all biomarker candidates in the case study, only neurofilament light chain levels showed a constant evolution and increased over time. They discriminated fatal familial insomnia from controls with an area under the curve of 0.992 (95% confidence interval [CI] = 0.974-1) in the case-control study. Higher concentrations were associated with methionine homozygosity at codon 129 PRNP (p = 0.006), shorter total disease duration (rho = -0.467, p = 0.019, 95% CI = -0.790 to -0.015), and shorter time from sampling to death (rho = -0.467, p = 0.019, 95% CI = -0.773 to -0.019). CONCLUSIONS: Plasma neurofilament light chain may be a valuable minimally invasive diagnostic biomarker for fatal familial insomnia after clinical onset. Most important, stage-related increase and association with disease duration indicate potential as a prognostic marker and as a surrogate marker in clinical trials.


Asunto(s)
Insomnio Familiar Fatal , Enfermedades por Prión , Biomarcadores , Estudios de Casos y Controles , Humanos , Insomnio Familiar Fatal/diagnóstico , Insomnio Familiar Fatal/genética , Filamentos Intermedios , Enfermedades por Prión/genética
15.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524506

RESUMEN

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Proteínas Priónicas , Priones/líquido cefalorraquídeo , Proteínas Recombinantes , Sensibilidad y Especificidad
16.
Proc Natl Acad Sci U S A ; 116(39): 19727-19735, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31492812

RESUMEN

Prion diseases are fatal neurodegenerative disorders caused by misfolding of the normal prion protein into an infectious cellular pathogen. Clinically characterized by rapidly progressive dementia and accounting for 85% of human prion disease cases, sporadic Creutzfeldt-Jakob disease (sCJD) is the prevalent human prion disease. Although sCJD neuropathological hallmarks are well-known, associated molecular alterations are elusive due to rapid progression and absence of preclinical stages. To investigate transcriptome alterations during disease progression, we utilized tg340-PRNP129MM mice infected with postmortem material from sCJD patients of the most susceptible genotype (MM1 subtype), a sCJD model that faithfully recapitulates the molecular and pathological alterations of the human disease. Here we report that transcriptomic analyses from brain cortex in the context of disease progression, reveal epitranscriptomic alterations (specifically altered RNA edited pathway profiles, eg., ER stress, lysosome) that are characteristic and possibly protective mainly for preclinical and clinical disease stages. Our results implicate regulatory epitranscriptomic mechanisms in prion disease neuropathogenesis, whereby RNA-editing targets in a humanized sCJD mouse model were confirmed in pathological human autopsy material.


Asunto(s)
Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Edición de ARN/genética , Animales , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Genotipo , Humanos , Ratones , Proteínas Priónicas/genética , Priones/metabolismo , Edición de ARN/fisiología , Transcriptoma/genética
17.
Proc Natl Acad Sci U S A ; 116(16): 7793-7798, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936307

RESUMEN

Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test-retest reliability (mean coefficient of variation, 13% in samples collected 8-11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action.


Asunto(s)
Desarrollo de Medicamentos/métodos , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Química Encefálica , Ensayo de Inmunoadsorción Enzimática , Humanos , Enfermedades por Prión/sangre , Enfermedades por Prión/líquido cefalorraquídeo , Enfermedades por Prión/diagnóstico , Proteínas Priónicas/sangre , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430645

RESUMEN

ß-glucocerebrosidase (GBA)-associated mutations are a significant risk factor for Parkinson's disease (PD) that aggravate the disease pathology by upregulating the deposition of α-Synuclein (α-Syn). The resultant clinical profile varies for PD patients without GBA mutations. The current study aimed to identify the proteomic targets involved in the pathogenic pathways leading to the differential clinical presentation of GBA-associated PD. CSF samples (n = 32) were obtained from PD patients with GBA mutations (n = 22), PD patients without GBA mutations (n = 7), and healthy controls that were carriers of GBA mutations (n = 3). All samples were subjected to in-gel tryptic digestion followed by the construction of the spectral library and quantitative SWATH-based analysis. CSF α-Syn levels were reduced in both PDIdiopathic and PDGBA cases. Our SWATH-based mass spectrometric analysis detected 363 proteins involved in immune response, stress response, and cell signaling in various groups. Intergroup analysis showed that 52 proteins were significantly up- or downregulated in various groups. Of these 52 targets, 20 proteins were significantly altered in PDGBA cases only while 2 showed different levels in PDIdiopathic patients. Our results show that the levels of several pathologically relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion G Protein-Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic and genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss, and aggregation of α-Syn in PDGBA cases.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Espectrometría de Masas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteoma , Proteómica , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/metabolismo
20.
Acta Neuropathol ; 141(6): 841-859, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881612

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78-0.90) and neurological controls (AUC = 0.73-0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer's disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.


Asunto(s)
Proteína ADAM10 , Encéfalo , Glicoproteínas de Membrana , Enfermedades por Prión , Receptores Inmunológicos , Proteína ADAM10/sangre , Proteína ADAM10/líquido cefalorraquídeo , Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Proteínas Priónicas/metabolismo , Receptores Inmunológicos/sangre , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA