Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 29(Pt 3): 908-915, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511024

RESUMEN

Resonant inelastic X-ray scattering in the XUV-regime has been implemented at BESSY II, pushing for a few-meV bandwidth in inelastic X-ray scattering at transition metal M-edges, rare earth N-edges and the K-edges of light elements up to carbon with full polarization control. The new dedicated low-energy beamline UE112-PGM1 has been designed to provide 1 µm vertical and 20 µm horizontal beam dimensions that serve together with sub-micrometre solid-state sample positioning as the source point for a high-resolution plane grating spectrometer and a high-transmission Rowland spectrometer for rapid overview spectra. The design and commissioning results of the beamline and high-resolution spectrometer are presented. Helium autoionization spectra demonstrate a resolving power of the beamline better than 10 000 at 64 eV with a 300 lines mm-1 grating while the measured resolving power of the spectrometer in the relevant energy range is 3000 to 6000.

2.
Appl Opt ; 59(8): 2580-2590, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32225799

RESUMEN

We present a simple and precise method to minimize aberrations of mirror-based, wavelength-dispersive spectrometers for the extreme ultraviolet (XUV) and soft x-ray domain. The concept enables an enhanced resolving power $ E/\Delta E $E/ΔE, in particular, close to the diffraction limit over a spectral band of a few percent around the design energy of the instrument. Our optical element, the "diffractive wavefront corrector" (DWC), is individually shaped to the form and figure error of the mirror profile and might be written directly with a laser on a plane and even strongly curved substrates. Theory and simulations of various configurations, like Hettrick-Underwood or compact, highly efficient all-in-one setups for $ {{\rm TiO}_2} $TiO2 spectroscopy with $ E/\Delta E \mathbin{\lower.3ex\hbox{$\buildrel{\displaystyle{\lt}}\over{\smash{\displaystyle\sim}\vphantom{_x}}$}} 4.5 \times {10^4} $E/ΔE∼x<4.5×104, are addressed, as well as aspects of their experimental realization.

3.
Opt Express ; 27(12): 16833-16846, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252903

RESUMEN

The optimized design of multilayer-coated blazed gratings (MLBG) for high-flux tender X-ray monochromators was systematically studied by numerical simulations. The resulting correlation between the multilayer d-spacing and grating blaze angle significantly deviated from the one predicted by conventional equations. Three high line density gratings with different blaze angles were fabricated and coated by the same Cr/C multilayer. The MLBG with an optimal blaze angle of 1.0° showed a record efficiency reaching 60% at 3.1 keV and 4.1 keV. The measured efficiencies of all three gratings were consistent with calculated results proving the validity of the numerical simulation and indicating a more rigorous way to design the optimal MLBG structure.

4.
J Synchrotron Radiat ; 25(Pt 1): 85-90, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271756

RESUMEN

The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratings were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.

5.
J Synchrotron Radiat ; 23(Pt 3): 700-11, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140149

RESUMEN

The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated.

6.
Rev Sci Instrum ; 87(5): 051904, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250376

RESUMEN

The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA