Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Molecules ; 28(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37836633

RESUMEN

BACKGROUND: Phloretin (Phl) is a flavonoid compound that contains multiple phenolic hydroxyl groups. It is found in many plants, such as apple leaves, lychee pericarp, and begonia, and has various biological activities, such as antioxidant and anticancer effects. The strong hydrogen bonding between Phl molecules results in poor water solubility and low bioavailability, and thus the scope of the clinical application of Phl is limited. Therefore, it is particularly important to improve the water solubility of Phl for its use to further combat or alleviate skin aging and oxidative damage and develop antioxidant products for the skin. The purpose of this study was to develop and evaluate a phloretin transfersome gel (PTG) preparation for transdermal drug delivery to improve the bioavailability of the drug and delay aging. METHODS: Phloretin transfersomes (Phl-TFs) were prepared and optimized by the thin-film dispersion-ultrasonication method. Phl-TFs were characterized by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The Log P method was used to determine the solubility of the Phl-TFs. The skin penetration ability of the prepared PTG was evaluated using the Franz diffusion cell method. In addition, the in vivo pharmacokinetics of PTG were studied in rats, and an antioxidant activity investigation was conducted using a D-gal rat model. RESULTS: Phl-TFs were successfully prepared with a Soybean Phosphatidylcholine (SPC)/CHOL ratio of 2.7:1 w/v, a phloretin concentration of 1.3 mg/mL, a hydration time of 46 min, an ultrasound time of 5 min, and an ultrasound power of 180 W. The Log P was 2.26, which was significantly higher than that of phloretin (p < 0.05, paired t test). The results of the in vitro penetration test demonstrated that the cumulative skin penetration of the Phl-TFs after 24 h was 842.73 ± 20.86 µg/cm2. The data from an in vivo pharmacokinetic study showed that the Cmax and AUC of PTG were 1.39- and 1.97-fold higher than those of the phloretin solution gel (PSG), respectively (p < 0.05, paired t test). The experimental results in aging rats showed that PTG had a better antioxidant effect. CONCLUSIONS: Phl-TFs and PTG preparations with a good shape, safety, and stability were successfully prepared. In vivo pharmacokinetics and preliminary antioxidant experiments further verified the transdermal penetration and antioxidant activity of the phloretin transdermal drug delivery preparation, providing an experimental basis for its further development.


Asunto(s)
Antioxidantes , Floretina , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Administración Cutánea , Piel/química , Agua/análisis
2.
Zhongguo Zhong Yao Za Zhi ; 48(4): 966-977, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36872267

RESUMEN

The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.


Asunto(s)
Farmacología en Red , Extractos Vegetales , Tecnología Farmacéutica , Etanol , Simulación del Acoplamiento Molecular , Semillas/química , Ziziphus/química , Extractos Vegetales/química , Schisandra/química , Frutas/química
3.
J Transl Med ; 20(1): 135, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303878

RESUMEN

Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.


Asunto(s)
Neoplasias , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Humanos , Neoplasias/terapia , Pronóstico , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
4.
J Nanobiotechnology ; 20(1): 509, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463199

RESUMEN

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias , Estados Unidos , Sistemas de Liberación de Medicamentos , Semivida , Disponibilidad Biológica , Neoplasias/tratamiento farmacológico
5.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4757-4764, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34581086

RESUMEN

A spectrum-activity relationship is established with high performance liquid chromatography(HPLC) fingerprints and the in vitro antioxidant activity to improve the quality evaluation system of Aralia taibaiensis. The HPLC profiles of 12 batches of samples were collected, and the similarity evaluation, heat map analysis and principal component analysis were conducted for the chemometric study of the fingerprint data. Combined with grey correlation analysis, the contributions of the common peaks in the fingerprints to the antioxidant activity were clarified, and the important peaks reflecting the efficacy were identified. The results showed that 17 common peaks were found in 12 batches of A. taibaiensis samples, and 6 of them were identified as saponins. Similarity evaluation, heat map analysis and principal component analysis roughly classified the A. taibaiensis herbs into two categories, i.e.,(1) S1-S10, S12 and(2) S11. Twelve batches of samples showed different antioxidant activities in a dose-dependent manner. In particular, S9 had the strongest antioxidant activity, while S11 was the weakest in antioxidant capacity, which was basically consistent with the overall score results. The results of grey correlation analysis demonstrated that the 17 common peaks scavenged DPPH radicals in the following order: X_3>X_(17)>X_4>X_8>X_7>X_(13)>X_2>X_6>X_(11)>X_(10)>X_(16)>X_(12)>X_9>X_5>X_(14)>X_1>X_(15), and scavenged ABTS radicals in the order of X_4>X_3>X_7>X_8>X_2>X_(17)>X_(13)>X_6>X_(16)>X_(11)>X_5>X_(12)>X_(10)>X_9>X_(14)>X_1>X_(15). Among them, X_3, X_4, X_7(araloside C), X_8 and X_(17) were the important peaks reflecting the efficacy of A. taibaiensis, which were basically consistent with those contained in the principal component 1. In this study, the correlation between the HPLC fingerprints of 12 batches of A. taibaiensis and its antioxidant activity provides a reference for the Q-marker screening and quality control of A. taibaiensis.


Asunto(s)
Aralia , Medicamentos Herbarios Chinos , Saponinas , Antioxidantes , Cromatografía Líquida de Alta Presión
6.
Zhongguo Zhong Yao Za Zhi ; 42(20): 4002-4006, 2017 Oct.
Artículo en Zh | MEDLINE | ID: mdl-29243440

RESUMEN

Araloside A is one of the main active ingredients of Aralia taibaiensis. In this study, HPLC-MS/MS analysis method of araloside A in the main organs of SD rats was established. At the same time, the content of araloside A in the main organs (heart, liver, spleen, lung, kidney, brain) after oral administration with araloside A (50 mg•kg⁻¹) were determined to explore the tissue distribution characteristics of araloside A in vivo. The results showed that the methodological study of araloside A in the main organs of SD rats met the requirements, araloside A distributed in heart, liver, spleen, lung, kidney and brain tissues reached peak at 1 h or 2 h after oral administration with 50 mg•kg-1.The distributions of araloside A at different time points after administration were distinct as follows: the content of araloside A at 20 min:liver>heart>spleen>lung>kidney>brain; the content of araloside A at 1 h: liver>spleen>kidney>lung>heart>brain; the content of araloside A at 2 h: liver>kidney>heart>spleen>lung>brain; the content of araloside A at 4 h: kidney>liver>spleen>heart>lung>brain; the content of araloside A at 8 h: spleen>heart>liver>kidney>lung>brain. Therefore, araloside A was mainly distributed in liver tissue, which had a certain correlation with the common use of Aralia taibaiensis in the treatment of hepatic disease. In addition, araloside A shows a low content but an obvious distribution in brain tissues, which indicates that the drug can pass through blood-brain barrier, and provides the basis for the study of araloside A in brain tissue.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Ácido Oleanólico/análogos & derivados , Saponinas/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Riñón , Hígado , Pulmón , Ácido Oleanólico/farmacocinética , Ratas , Ratas Sprague-Dawley , Bazo , Espectrometría de Masas en Tándem , Distribución Tisular
7.
Zhongguo Zhong Yao Za Zhi ; 41(13): 2527-2531, 2016 Jul.
Artículo en Zh | MEDLINE | ID: mdl-28905580

RESUMEN

To study the in vivo intestinal absorption kinetics of phloridzin in rats. The absorption of phloridzin in the small intestines and colon of rats was investigated using an in vivo single-pass perfusion method and the drug concentration was measured by HPLC. The effects on intestinal absorption of different drug concentration and P-glycoprotein (P-gp) inhibitor were conducted. The results showed that the phloridzin could be absorbed in whole intestine, but more fully in the jejunum and colon segment,poorly absorbed in the duodenum and ileum. The absorption rate constant (Ka) and the apparent absorption coefficient(Papp)of phloridzin decreased following the sequence of jejunum> colon > duodenum > ileum. Absorption parameters of phloridzin had no significant difference at different concentration (5.14, 10.28, 20.56 mg•L⁻¹) . The saturate phenomena was not observed under the test range of drug concentration, and the absorption mechanism may be the passive diffusion transport.There had a significant difference in Ka and Papp values between P-gp inhibitor and no P-gp inhibitor groups. Phloridzin may be the substrate of P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Florizina/metabolismo , Animales , Íleon , Intestino Delgado , Intestinos/efectos de los fármacos , Yeyuno , Ratas , Ratas Sprague-Dawley
8.
Zhong Yao Cai ; 39(6): 1361-4, 2016 Jun.
Artículo en Zh | MEDLINE | ID: mdl-30156809

RESUMEN

Objective: To optimize the preparation of total saponins of Aralia taibaiensis phospholipid complex( TSAT-PC) by the central composite design-response surface method. Methods: Total saponins of Aralia taibaiensis phospholipid complex was prepared by using solvent evaporation method, five factors including reaction solvent, reaction time, reaction temperature, ratio of reactants on this reaction, and the concentration of the drug were investigated, then to optimize the preparation of TSAT-PC by the central composite design response surface method, and to study its physicochemical properties. Results: The optimal process conditions were as follows, the reaction time was 1 h, the reaction temperature was 45 ℃,the ratio of soya lecithine ( SL) and TSAT was 3∶ 1, the reaction concentration was16 mg / m L, the complexing rate was 97. 23%,it was less than 5% with the predicted deviation; IR analysis proved the formation of TSAT-PC, and the solubility in the octyl alcohol was higher than the original drug. Conclusion: TSAT-PC was successfully developed by the optimized process, enhance the solubility in octyl alcohol, which provide the reference for the further development and utilization of Chinese materia medica preparation.


Asunto(s)
Aralia , Fosfolípidos , Saponinas
9.
Drug Des Devel Ther ; 18: 3549-3594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139676

RESUMEN

A multidrug combination strategy is an important mean to improve the treatment of cancer and is the mainstream scheme of clinical cancer treatment. The active ingredients of traditional Chinese medicine, represented by toad skin and toad venom, have the advantages of high efficiency, low toxicity, wide action and multiple targets and have become ideal targets in combined treatment strategies for tumors in recent years. Toad skin and toad venom are traditional Chinese animal medicines derived from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider that have shown excellent therapeutic effects on the treatment of various cancers and cancer pain as adjuvant antitumor drugs in clinical practice. The involved mechanisms include inducing apoptosis, arresting the cell cycle, inhibiting cell proliferation, migration and invasion, inhibiting tumor angiogenesis, reversing the multidrug resistance of tumor cells, and regulating multiple signaling pathways and targets. Moreover, a multidrug combination strategy based on a nanodelivery system can realize the precise loading of the active ingredients of toad skin or toad venom and other antitumor drugs and carry drugs to overcome physiological and pathological barriers, complete efficient enrichment in tumor tissues, and achieve targeted delivery to tumor cells and the controlled release of drugs, thus enhancing antitumor efficacy and reducing toxicity and side effects. This article reviewed the clinical efficacy and safety of the combination of toad skin and toad venom with chemotherapeutic drugs, targeted drugs, analgesics and other drugs; evaluated the effects and mechanisms of the combination of toad skin and toad venom with chemotherapy, targeted therapy, radiotherapy or hyperthermia, traditional Chinese medicine, signaling pathway inhibitors and other therapies in cell and animal models; and summarized the codelivery strategies for the active ingredients of toad skin and toad venom with chemotherapeutic drugs, small-molecule targeted drugs, monoclonal antibodies, active ingredients of traditional Chinese medicine, and photodynamic and photothermal therapeutic drugs to provide a basis for the rational drug use of toad skin and toad venom in the clinic and the development of novel drug delivery systems.


Asunto(s)
Venenos de Anfibios , Piel , Animales , Humanos , Venenos de Anfibios/química , Venenos de Anfibios/farmacología , Piel/efectos de los fármacos , Medicina Tradicional China , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Bufonidae , Proliferación Celular/efectos de los fármacos
10.
Int J Nanomedicine ; 19: 7273-7305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050871

RESUMEN

Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.


Asunto(s)
Venenos de Anfibios , Bufanólidos , Piel , Animales , Venenos de Anfibios/química , Venenos de Anfibios/farmacología , Venenos de Anfibios/farmacocinética , Humanos , Piel/efectos de los fármacos , Piel/química , Bufanólidos/química , Bufanólidos/farmacología , Bufanólidos/farmacocinética , Bufanólidos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Bufo bufo , Bufonidae , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Neoplasias/tratamiento farmacológico , Disponibilidad Biológica
11.
Int J Biol Macromol ; 259(Pt 2): 129193, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191106

RESUMEN

Dandelion (Taraxacum mongolicum Hand.-Mazz), as a famous medicinal and edible plant, has the effects of clearing heat and detoxifying, diuresis, and resolving masses. Phytochemistry investigations revealed that T. mongolicum has various bioactive ingredients, mainly including flavonoids, sterols, polysaccharides, phenolic acids and volatile oils. There is growing evidence have shown that the polysaccharides from T. mongolicum (TMPs) are a class of representative pharmacologically bioactive macromolecules with a variety of biological activities both in vitro and in vivo, such as immunomodulatory, anti-inflammatory, anti-oxidant, anti-tumor, hepatoprotective, hypolipidemic and hypoglycemic, anti-bacterial, regulation of intestinal microbial, and anti-fatigue activities, etc. Additionally, the structural modification and potential applications of TMPs were also outlined. The present review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and potential industry applications of TMPs to support their therapeutic potential and health care functions. Overall, the present review provides a theoretical overview for further development and utilization of TMPs in the fields of pharmaceutical and health food.


Asunto(s)
Taraxacum , Taraxacum/química , Polisacáridos/farmacología , Polisacáridos/química , Flavonoides/química , Antioxidantes/farmacología
12.
Int J Nanomedicine ; 19: 945-964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293612

RESUMEN

The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.


Asunto(s)
Nanopartículas , Neoplasias , Irinotecán/uso terapéutico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Liposomas/uso terapéutico , Micelas , Nanopartículas/química , Camptotecina , Neoplasias/tratamiento farmacológico
13.
Int J Biol Macromol ; 263(Pt 1): 130206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373568

RESUMEN

Hippophae rhamnoides L. (sea buckthorn) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to strengthen the stomach and digestion, relieving cough and resolving phlegm, promoting blood circulation, and resolving blood stasis in traditional Chinese medicine. Emerging evidence has shown that H. rhamnoides polysaccharides (HRPs) are vital bioactive macromolecules responsible for its various health benefits. HRPs possess the huge potential to develop a drug improving or treating different diseases. In this review, we comprehensively and systematically summarize the recent information on extraction and purification methods, structural features, biological activities, structure-activity relationships, and potential industry applications of HRPs and further highlight the therapeutic potential and sanitarian functions of HRPs in the fields of therapeutic agents and functional food development. Additionally, this paper also lists a variety of biological activities of HRPs in vitro and in vivo roundly. Finally, this paper also discusses the structure-activity relationships and potential applications of HRPs. Overall, this work will help to have a better in-depth understanding of HRPs and provide a scientific basis and direct reference for more scientific and rational applications.


Asunto(s)
Hippophae , Hippophae/química , Frutas/química , Polisacáridos/farmacología , Polisacáridos/análisis
14.
Drug Deliv ; 31(1): 2400476, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39252545

RESUMEN

The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.


Asunto(s)
Hidrogeles , Recurrencia Local de Neoplasia , Humanos , Hidrogeles/química , Hidrogeles/administración & dosificación , Recurrencia Local de Neoplasia/prevención & control , Animales , Inyecciones , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico
15.
RSC Adv ; 14(43): 31367-31384, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39359341

RESUMEN

Essential oil of Acorus tatarinowii Schott (ATEO) have significant biological activity, but their physical and chemical properties are unstable and susceptible to interference by external factors, resulting in oxidation, decomposition, and isomerization of essential oils (EOs), ultimately diminishing the quality of EOs and escalating clinical risks. In this research, based on the concept of " combination of medicine and adjuvant, " the unsuitable stabilizer Cinnabaris in Lingzhu powder prescription was modified with a SiO2 surface to become a stabilizer suitable for Pickering emulsion. The modified Cinnabaris was synthesized, with a focus on exploring the surface modification of Cinnabaris to facilitate its role as a stabilizer in Pickering emulsion. Thermal stability studies showed that modified Cinnabaris-stabilized emulsion had higher EOs retention and lower peroxide value and hydrogen peroxide content. GC-MS analysis showed that the volatile components in the emulsion were more stable than the EOs. In vitro dissolution experiments showed that in the dissolution medium of artificial gastric juice and artificial intestinal juice, compared with the ATEO, the release in Pickering emulsion was faster within 48 h, indicating that the ATEO had been encapsulated in Pickering emulsion, which could improve the in vitro dissolution rate of EOs. This study convincingly demonstrates the potential of modified Cinnabaris-stabilized Pickering emulsion to improve the thermal stability and in vitro dissolution rate of EOs.

16.
J Ethnopharmacol ; 337(Pt 2): 118871, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368760

RESUMEN

ETHNOPHARMACOLOGIC RELEVANCE: Pseudostellaria heterophylla (Miq.) Pax belongs to the Caryophyllaceae family, which is widely used in traditional Chinese medicine in Asia. P. heterophylla was first documented in the classical text Bencao Congxin, also known as "Haier Shen". As a renowned folk medicine with a long history of medicinal application in China, this plant is frequently employed to address spleen deficiency and fatigue, loss of appetite, and weakness after illness. In recent years, P. heterophylla has gained significant global attention as an important medicinal plant, attributable to its pharmacological activities on the immune and endocrine systems, as well as its diverse applications. AIM OF THE WORK: This review aims to deliver a comprehensive and analytical overview of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology, and quality control of P. heterophylla, while also offering novel insights and opportunities for future research. MATERIALS AND METHODS: Relevant information regarding P. heterophylla was gathered from various databases, including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, and CNKI, in addition to The Catalogue of Life, the Flora of China database, and The World Flora Online. All published articles in multiple languages have been included and properly cited. The chemical structure of the compound was illustrated utilizing ChemDraw 19.0 software. RESULTS: P. heterophylla has been traditionally employed to address a range of ailments, including cancer, cardiovascular diseases, diabetes, and respiratory disorders. More than 289 active constituents have been identified in P. heterophylla, comprising cyclic peptides, polysaccharides, saponins, alkaloids, flavonoids, nucleosides, and amino acids. Pharmacological investigations have demonstrated that P. heterophylla and its active constituents exhibit a broad spectrum of biological activities, including anti-cancer, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory effects, modulation of intestinal flora, enhancement of cognitive function, and inhibition of tyrosine kinase activity. Furthermore, it is extensively utilized in the functional food and cosmetics industries. CONCLUSION: As a dual-purpose resource for both food and medicine, P. heterophylla possesses significant health care functions and considerable edible and medicinal value, with promising prospects for future development and utilization. However, numerous investigations into the biological activities of P. heterophylla are primarily focused on its extracts and bioactive constituents, and the mechanisms underlying the actions of these extracts and components remain unclear, with a dearth of studies on clinical efficacy and safety. Consequently, further detailed in vitro and in vivo studies investigating the mechanisms of action of pure active compounds of P. heterophylla are warranted, along with additional clinical investigations to ascertain the safety and efficacy of the plant for human use.

17.
Biomed Pharmacother ; 179: 117398, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39245000

RESUMEN

At present, chemotherapy combined with photodynamic therapy is exerting satisfactory therapeutic effects in the treatment of tumors. Chlorin e6 (Ce6) is a photosensitizer with high efficiency and low dark toxicity. At the same time, elemene (ELE) contains high-efficiency and low-toxicity anti-cancer active ingredients, which can effectively penetrate tumor tissue and inhibit its recovery and proliferation. Due to the poor water solubility of these two drugs, we prepared ELE/Ce6 co-loaded liposomes (Lipo-ELE/Ce6) to improve their water solubility, thereby enhancing the anti-tumor effect. The characterization of Lipo-ELE/Ce6 showed that Lipo-ELE/Ce6 had suitable encapsulation efficiency (EE), particle size, polydispersity (PDI), zeta potential, and good photo-controlled release properties. In vitro, Lipo-ELE/Ce6 effectively inhibited the growth of T24 cells and induced apoptosis, and more importantly, in vivo experiments showed that Lipo-ELE/Ce6 had significant anti-tumor effects, which was significantly better than free drugs. The above results suggest that Lipo-ELE/Ce6 can significantly enhance the induction of apoptosis of non-muscle invasive bladder cancer (NMIBC) by light-controlled release and ROS response.


Asunto(s)
Apoptosis , Clorofilidas , Preparaciones de Acción Retardada , Liposomas , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Línea Celular Tumoral , Porfirinas/farmacología , Porfirinas/química , Porfirinas/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Fotoquimioterapia/métodos , Ratones Desnudos , Ratones , Liberación de Fármacos , Ratones Endogámicos BALB C , Tamaño de la Partícula , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Solubilidad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Neoplasias Vesicales sin Invasión Muscular
18.
J Ethnopharmacol ; 335: 118615, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39069030

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Amomum villosum Lour. is a widely esteemed species of medicinal plant on a global scale. Its medicinal properties have been documented as early as the Tang Dynasty, particularly the fruit, which holds significant medicinal and culinary value. This plant is extensively found in tropical and subtropical regions across Asia. It possesses the properties of warming the middle and dispelling cold, regulating Qi to invigorate the spleen, harmonizing the stomach to alleviate vomiting, and nourishing deficiencies. In recent years, A. villosum has garnered global attention for its remarkable biological activity. Currently, numerous bioactive compounds have been successfully isolated and identified, showcasing a diverse array of pharmacological activities and medicinal benefits. AIM OF THE WORK: This review aims to provide a comprehensive analysis of the research advancements in the geographical distribution, botany, traditional applications, phytochemistry, pharmacological activity, quality control, clinical applications, and toxicology of A. villosum. Furthermore, a critical summary of the current research and future prospects of this plant is presented. MATERIALS AND METHODS: Obtain information about A. villosum from ancient literature, doctoral and master's theses, and scholarly databases including Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, plant directories, and clinical reports. RESULTS: At present, about 500 compounds have been isolated and identified from various organs of A. villosum, including monoterpenoids, sesquiterpenoids, diterpenoids, flavonoids, phenols, polysaccharides, and other components. Modern pharmacological studies have revealed that A. villosum exhibits exceptional biological activities in vitro and in vivo, such as anti-inflammatory, antioxidant, liver protection, anti-tumor, hypoglycemic, anti-microbial, regulating gastrointestinal activity, immune regulation, regulating flora, anti-obesity, estrogen, and more. Some of these activities have found extensive application in clinical practice. CONCLUSION: A. villosum, as a well-established medicinal herb, holds significant therapeutic potential and is also valued for its culinary applications. Currently, the research on the active components or crude extracts of A. villosum and their potential mechanisms of action remains limited. Furthermore, certain pharmacological activities require further elucidation for a comprehensive understanding of its internal mechanisms. Moreover, it is strongly recommended to prioritize research on pharmacokinetics and toxicity studies. These efforts will facilitate a thorough exploration of the potential of A. villosum and establish a robust foundation for its potential clinical applications.


Asunto(s)
Amomum , Etnofarmacología , Medicina Tradicional , Fitoquímicos , Humanos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Amomum/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoterapia , Plantas Medicinales/química
19.
Int J Biol Macromol ; 278(Pt 1): 134566, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116988

RESUMEN

Dictyophora species is an edible and medicinal fungus belonging to the Basidiomycotina, Gasteromycetes, Phallales, family Phallaceae, and genus Dictyophora, which is popular with consumers in China and across various Asian regions. Polysaccharides from Dictyophora species (DPs) are important bioactive macromolecules with multiple health benefits, according to published studies, including anti-tumor, antioxidative, anti-obesity, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory, regulation of gut microbiota, antibacterial, renoprotective, and other pharmacological effects. Based on their rich pharmacological activities, the preparation techniques, structural characteristics and pharmacological activities of DPs have been extensively studied. However, to the best of our knowledge, there is no dedicated review to shed light on recent advances in DPs. Therefore, in order to fill this gap, this review provides a comprehensive overview of the research on DPs, including the latest advances in extraction, isolation and purification, structural characteristics, pharmacological properties, safety assessment and potential utilizations, which will provide a theoretical basis for the research and development of subsequent DPs-related products.


Asunto(s)
Polisacáridos Fúngicos , Humanos , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Basidiomycota/química , Animales , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación
20.
J Ethnopharmacol ; 326: 117979, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38412892

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW: This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS: By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS: More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS: This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.


Asunto(s)
Lamiaceae , Polisacáridos , Animales , Humanos , Lamiaceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA