Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Sci (China) ; 138: 10-18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135378

RESUMEN

The ozone (O3) pollution in China drew lots of attention in recent years, and the Sichuan Basin (SCB) was one of the regions confronting worsening O3 pollution problem. Many previous studies have shown that regional transport is an important contributor to O3 pollution. However, very few features of the O3 profile during transport have been reported, especially in the border regions between different administrative divisions. In this study, we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O3 transport event during the campaign. Vertically, the O3 transport occurred in the bottom of the residual layer, between 200 and 500 m above ground level. Horizontally, the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories. The effect of transport in the residual layer on the surface O3 concentration was related to the spatial distribution of O3. For cities with high O3 concentrations in the upwind region, the transport process would bring clean air masses and abate pollution. For downwind lightly polluted cities, the transport process would slow down the decreasing or even increase the surface O3 concentration during the night. We provided observational facts on the profile features of a transboundary O3 transport event between two provincial administrative divisions, which implicated the importance of joint prevention and control measures. However, the sounding parameters were limited and the quantitative analysis was preliminary, more integrated, and thorough studies of this topic were called for in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Estaciones del Año , China
2.
Environ Pollut ; 357: 124467, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950850

RESUMEN

The 31st FISU Summer World University Games (SWUG) was held in Chengdu, southwestern China, from July 22 to August 8, 2023. A series of control measures were carried out to ensure good air quality during the SWUG, providing an opportunity to investigate the atmospheric behaviors of light-absorbing aerosols under such a substantial disturbance caused by the control measures. To assess the impacts of emission controls on primary pollutants, a field campaign was conducted at a rural site in Chengdu to investigate the characterization of equivalent black carbon (eBC). The changes of eBC concentrations before, during, and after the SWUG were characterized. The sources of eBC were resolved, and the impacts of atmospheric processes on the absorption capacity were also investigated. During the SWUG, the eBC concentration decreased by 12.1 % and 25.3 % compared with those before and after the SWUG. A fossil fuel combustion (eBCff) and a biomass burning (eBCbb) originated eBC were resolved using the aethalometer model. Both eBCff and eBCbb decreased during the SWUG, indicating the effectiveness of control measures. After the SWUG, the influence of biomass burning emissions became more and more significant, and the contribution of brown carbon (BrC) to light absorption at 370-660 nm increased by 52, 19, 7, 6, and 17 % compared to those during the SWUG. As the biomass burning emitted aerosols aged, the absorption Ångström exponent and babs(BrC370nm) decreased gradually, which was mainly due to the photobleaching of the chromophores during the daytime. eBCff was mainly affected by strong wind, while high eBCbb concentration was mainly attributed to the gradual accumulation of biomass-burning emissions near the observation site. The results show the significant reduction of eBC with the implementation of the air pollution mitigation campaign, and provide insights on the impacts of atmospheric processes on BC optical properties during summertime.

3.
Huan Jing Ke Xue ; 45(1): 48-60, 2024 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-38216457

RESUMEN

To investigate the characteristics, source apportionment, and potential source areas of carbonaceous aerosols in Chongqing during winter, PM2.5 samples were collected from January 2021 to February 2021 in the urban areas of Wanzhou (WZ), Yubei (YB), and Shuangqiao (SQ). The results showed that the average mass concentrations of PM2.5, OC, and EC in SQ were (72.6 ±33.3), (18.2 ±8.2), and (4.4 ±1.7) µg·m-3, respectively, higher than those in WZ[(67.2 ±30.3), (17.2 ±7.4), and (5.1 ±2.4) µg·m-3] and YB[(63.4 ±25.7), (15.4 ±6.3), and (4.2 ±1.9) µg·m-3]. Compared with that during the clear period, the concentration and fraction of EC in total carbon increased by 103.0% and 8.1%, respectively, in WZ compared to that in other areas during pollution period, whereas the OC/EC ratio was decreased significantly (-10.5%), indicating that the primary emission of carbonaceous aerosols increased significantly during the pollution period. The average mass concentrations of secondary organic carbon (SOC) in SQ and YB were (7.7 ±4.8) µg·m-3 and (6.9 ±2.8) µg·m-3 significantly higher, respectively, than that in WZ[(4.5 ±1.9) µg·m-3] during the campaign. This indicated that the secondary transformation had a greater influence on the carbonaceous aerosols in SQ and YB than that in WZ. Furthermore, in contrast to that in WZ, the ratios of SOC/OC were increased with the increase in PM2.5 concentrations, and significant correlations between SOC concentration and aerosol water content, NO2 concentration, and the value of NOR were observed in SQ and YB (P < 0.01), indicating that the increasing of carbonaceous aerosol concentrations might be mainly driven by the SOC with -NO2 groups produced by aqueous chemical reactions during winter in SQ and YB. The positive definite matrix factor (PMF) results in these urban areas showed that the contribution of biomass/coal combustion source in WZ (47.4%) was significantly higher than that in YB (34.2%) and SQ (38.1%), whereas the gasoline motor vehicle emission and secondary transformation impacts were more significant in YB. The results of the concentration weighted trajectory (CWT) showed that the potential sources of carbonaceous aerosols were mainly the local and northeastern parts of these urban areas (such as Changshou).

4.
Huan Jing Ke Xue ; 43(4): 1756-1765, 2022 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-35393799

RESUMEN

Based on the basic information of the Second National Pollution Source Census and the VOCs source profiles of industrial industries, we established the speciated emission inventory of major industrial sources in Chongqing in 2017, estimated their ozone formation potential (OFP), and identified the key control species of industrial VOCs and their sources. The results showed that the total VOCs emission from industrial sources and their OFPs were 144.12 kt and 477.34 kt, respectively. Automobile manufacturing, equipment manufacturing, plastic manufacturing, and chemical raw materials and chemical products were all industries that contributed significantly to VOCs emissions and OFP, with VOCs emissions of 37.18, 33.09, 19.47, and 18.14 kt and OFP of 191.43, 153.69, 27.21, and 57.51 kt, respectively. Aromatics were the components with the largest contribution to VOCs emissions and OFP, accounting for 62.55% of the total VOCs emissions and 82.15% of the total OFP, mainly from metal surface coating and petrochemical industries. The major reactive species of industrial source VOCs were m/p-xylene, toluene, ethylbenzene, o-xylene, and propylene, with OFP of 130.47, 103.37, 46.37, 42.83, and 28.26 kt, respectively, cumulatively accounting for 71.11% of the total OFP. In terms of spatial distribution, the emission intensity of VOCs and O3 pollution degree in all districts and counties of Chongqing were relatively consistent; the high value points of VOCs emissions and OFP were mainly distributed in the main urban area and the western area, and the sources of VOCs emission in the main urban area and western area were mainly in metal surface coating and the petrochemical industry, respectively.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Industrias , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Environ Sci Ecotechnol ; 8: 100125, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156990

RESUMEN

The road transport sector in megacities is confronted with pressing local air pollution and carbon dioxide (CO2) control issues. To determine effective policy instruments for saving energy and the co-control of air pollutants and CO2, several mainstream measures were examined and compared in Chongqing's road transport sector from 2017 to 2035. An integration assessment framework was developed by combining the Long-range Energy Alternatives Planning (LEAP) system and a set of quantitative methods for evaluating the co-benefits of emission reductions (including the air pollutant equivalent (APeq), co-control coordinate system, and pollutant reduction cross-elasticity (Elsa/b)). Results showed that the shifting transportation modes scenario presented the most significant potential for energy-saving and emission reductions, reducing energy use by 30.9% and air pollutants and CO2 emissions by approximately 27-32% compared with the business as usual (BAU) scenario in 2035. The improving energy efficiency scenario also provided significant co-benefits for reducing air pollutants and CO2 emissions. Nevertheless, the promoting alternative fuel scenario may increase fine particulate matter (PM2.5) emissions by 2.2% compared to BAU in 2035 under the cleanness of regional electricity in 2017. Our findings suggest that the shifting transportation modes were effective measures to reduce air pollutants and CO2 in the short term synergistically, and highlighted the importance of cleaner electricity generation to develop electric vehicles in the medium and long term.

6.
Huan Jing Ke Xue ; 42(8): 3595-3603, 2021 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-34309246

RESUMEN

In late August 2020, a period of O3 pollution occurred in the main urban area of Chongqing and lasted for approximately 2 weeks (till early September). Ambient air samples, collected using Summa Canisters and DNPH sampling columns at three observation sites in the main urban area, were used to study the composition, photochemical reaction activity, and source apportionment of volatile organic compounds (VOCs) during the period of O3 pollution. The results showed that the mean volume fraction of TVOCs in the main urban area of Chongqing during the observation period was 45.08×10-9, and the components were ranked by volume fraction in the following order:OVOCs, alkanes, halohydrocarbons, alkenes, aromatics, and alkynes. Formaldehyde, ethylene, and acetone made up the higher volume fraction of VOCs, together accounting for more than 30% of TVOCs. OVOCs and alkenes contributed more to · OH loss rate (Li·OH) and ozone formation potential (OFP) and were the key VOCs components for ozone generation. The main active species in the OVOCs component were formaldehyde, acetaldehyde, and acrolein; the main active species in the alkene component were isoprene, ethylene, and n-butene. The ratio of xylene to ethylbenzene in VOCs was low, and they showed a significant correlation, indicating that the VOCs air mass in the main urban area was highly aging and affected by long-distance transmission from other areas. The source apportionment results of the PMF model showed five main sources of VOCs, namely secondary generation (27.67%), vehicle exhaust (26.56%), industrial emission (17.86%), plant (14.51%), and fossil fuel combustion (13.4%).


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
7.
Sci Total Environ ; 719: 137483, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32120102

RESUMEN

The light absorption of brown carbon (BrC) makes a significant contribution to aerosol light absorption (Abs) and affects the radiative forcing. In this study, we analyzed and evaluated the light absorption and radiative forcing of BrC samples collected from December 2016 to January 2017 in Chongqing and Chengdu in the Sichuan Basin of Southwest China. Based on a two-component model, we estimated that BrC light absorption at 405 nm was 19.9 ± 17.1 Mm-1 and 19.2 ± 12.3 Mm-1 in Chongqing and Chengdu, contributing 19.0 ± 5.0% and 17.8 ± 3.7% to Abs respectively. Higher Abs405,BrC, MAE405,BrC, and AAE405-980 values were observed during the pollution period over the clean period in both cities. The major sources of BrC were biomass burning (BB) and secondary organic aerosol in Chongqing, and coal combustion (CC) and secondary organic aerosol in Chengdu. During the pollution period, aged BrC formed from anthropogenic precursors via its aqueous reactions with NH4+ and NOx had impacts on BrC absorption in both cities. BB led to higher Abs405,BrC, MAE405,BrC, and AAE405-980 values in Chongqing than Chengdu during the pollution period. The fractional contribution of radiation absorbed by BrC relative to BC in the wavelengths of 405-445 nm was 60.2 ± 17.0% and 64.2 ± 11.6% in Chongqing and Chengdu, significantly higher than that in the range of 405-980 nm (26.2 ± 6.7% and 27.7 ± 4.6% respectively) (p < 0.001). This study is useful for understanding the characterization, sources, and impacts of BrC in the Sichuan Basin.

8.
Sci Total Environ ; 627: 1442-1452, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30857106

RESUMEN

Chongqing is the largest megacity in southwest China and has a mountainous and humid climate. Online measurements of 96 volatile organic compound (VOC) species were performed at the three sites JYS, CJZ, and NQ, which are located in the northern, central, and southern sections of the Chongqing urban district, respectively. The measurements were performed from August to September 2015, at a time interval of 1h. The spatiotemporal variation of VOC sources in Chongqing was characterized by combining the positive matrix factorization (PMF) model with the online measurement data. The average total VOC mixing ratios of the CJZ, NQ, and JYS sites were 41.2, 34.1, and 23.0ppbv, respectively. The mixing ratios of tracers of incomplete combustion, exhibited obvious bimodal profiles at the CJZ and NQ sites, whereas those at the JYS site exhibited little change throughout the day. Isoprene at the three sites followed a similar pattern of average diurnal variations in mixing ratios, with minimums before sunrise and maximums at noon. The dominant sources of acetaldehyde and acetone were secondary anthropogenic source and aged air mass transport, respectively, in the city of Chongqing. Seven sources were apportioned to the results of PMF calculation using spatiotemporal VOCs composition data. The Vehicle-related sources were the largest contributor at CJZ and NQ, contributing 44% and 37% of the total VOC mixing ratios, respectively, and exhibited clear diurnal variations. Aged background air, with 68% of total VOC emissions, dominated the VOC emissions at JYS. Solvent utilization was a very important contributor at NQ and coincided with the higher levels of aromatics. O3 formation was generally VOC-limited at NQ and CJZ, and was NOx-limited and transition region alternatively at JYS. Alkenes were important for the O3 formation at CJZ, and both alkenes and aromatics were important for the O3 formation at NQ.

9.
Sci Total Environ ; 584-585: 523-534, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131453

RESUMEN

Chongqing, the largest megacity in southwest China, faces serious aerosol pollution but lacks information on particle characteristics and its sources. Official data released by Chongqing Environmental Protection Bureau demonstrated that urban PM10 concentrations decreased remarkably from 150µgm-3 in 2000 to 90µgm-3 in 2012. However, only several peer-reviewed studies paid attention to local fine particle (PM2.5) pollution. In the study, PM2.5 samples were obtained and subjected to chemical analysis in an urban site of the city during 2012 to 2013. The annual mean PM10 and PM2.5 concentrations in urban Chongqing were 103.9±52.5 and 75.4±42.2µgm-3, respectively. PM2.5 showed a distinct seasonality of high concentration in winter and similar levels in other seasons. The average OC/EC (organic carbon/element carbon) ratio was 3.7 with more high-OC/EC ratio sources contribution in autumn and winter. The varying sources and formation mechanisms resulted in SO42- and NH4+ peaks in both summer and winter, whereas high nitrate concentration was only observed in winter. In the average mass closure, PM2.5 was composed of 23.0% SO42-, 11.7% NO3-, 10.9% NH4+, 30.8% OM (organic matter), 5.2% EC, 8.2% mineral dust, 0.6% TEO (trace elements), 1.0% Cl- and 1.1% K+, while exhibiting large seasonal variability. Using positive matrix factorization (PMF), six sources were apportioned in PM2.5: secondary inorganic aerosols, coal combustion, other industrial pollution, soil dust, vehicular emission, and metallurgical industry. The annual mean contribution of above sources to PM2.5 was 37.5, 22.0, 17.5, 11.0, 9.8 and 2.2%, respectively. Coal combustion was identified by As tracer and dominated the primary sources of PM2.5, while the two different industrial sources were characterized by Cr and Mo, Co, Ni, and Se, respectively. The study is of great importance in characterizing the historical trends, current chemical characteristics and sources of fine particles in urban Chongqing.

10.
Sci Total Environ ; 580: 224-234, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27989473

RESUMEN

To investigate the characteristics of water-soluble inorganic ions (WSIIs) in Chongqing, a well-known foggy and acid region in southwestern China, hourly real-time concentrations of five cations (Na+, K+, NH4+, Ca2+, and Mg2+) and six anions (F-, Cl-, NO2-, NO3-, PO43-, and SO42-) in PM2.5 during winter (from Dec. 18, 2015 to Mar. 20, 2016) in Chongqing were collected by applying In-situ Gas and Aerosol Compositions Monitor. The hourly total concentration of WSIIs was 38.5µg/m3 on average, accounting for 57% of PM2.5 mass concentration. Secondary inorganic aerosols (NH4+, NO3-, and SO42-) were dominant WSIIs, accounting for 91% of WSIIs mass. Compared to ten years ago, SO42- concentrations were decreased by 31% but NO3- levels were doubled, likely indicative of sharply enhanced contribution to fine particle pollution from mobile sources over stationary sources. NO3- originated from the current fluxes of NH3 and HNO3 onto sulfate particles and/or from in-cloud processes were critical pathways under humid conditions in the study area. Water content and/or RH might be important factors controlling nitrate formation. Trajectory analysis manifested that aerosol pollutions in Chongqing were mostly caused by local emissions.

11.
Huan Jing Ke Xue ; 35(3): 810-9, 2014 Mar.
Artículo en Zh | MEDLINE | ID: mdl-24881365

RESUMEN

PM2.5 was sampled from commercial, industrial and residential areas in Chongqing urban city from 2nd May to 10th May 2012 in order to find out characteristics and sources of carbon in PM2.5. Eight kinds of carbons were analyzed by the TOR method. Characteristics of carbon pollution in PM2.5 from three kinds of functional areas and six kinds of sources, including coal-combustion, exhausts (vehicle, boat and construction machine), biomass burning, cooking smoke, were analyzed. Based on carbon source profiles, local indicating components of carbon sources in PM2.5 were obtained used the chemical mass balance (CMB) model. Contribution rate of different sources to PM2.5 carbon were parsed out by factor analysis. The results showed the OC/EC of coal-combustion, vehicle exhausts, boat exhausts, construction machine exhausts, biomass burning and cooking smoke were 6.3, 3.0, 1.9, 1.4, 12.7 and 31.3, respectively. High loads of EC2 and EC3 indicated diesel vehicle exhaust emissions, high loads of OC2, OC3, OC4 and OPC indicated coal-combustion emissions, OC1, OC2, OC3, OC4 and EC1 indicated gasoline vehicle exhaust emissions, OC3 indicated cooking emissions, and OPC indicated biomass burning emissions. OC/PM2.5, EC/PM2.5, secondary organic carbon (SOC)/OC in the commercial area were 17.4%, 6.9% and 40.0%, respectively. OC/PM2.5, EC/PM2.5 and SOC/OC in the industrial area were 15.5%, 6.6% and 37.4%, respectively. OC/PM2.5, EC/PM2.5 and SOC/OC in the residential area were 14.6% 5.6% and 42.8%, respectively. In the industrial area, the main sources of carbon in PM2.5 were coal combustion, gasoline vehicle exhausts and diesel exhaust. In the commercial area, the main sources of carbon were gasoline vehicle exhausts, diesel exhausts and cooking. In the residential area, the main sources of carbon were gasoline vehicle exhausts, cooking smoke and diesel exhausts.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Biomasa , China , Culinaria , Gasolina , Humo , Emisiones de Vehículos
12.
Environ Pollut ; 187: 145-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24491300

RESUMEN

To investigate the association and effects of air pollution level on male semen quality in urban and rural areas, this study examines the outdoor concentrations of particulate matter (PM10), sulfur dioxide (SO2), nitrous dioxide (NO2) and semen quality outcomes for 1346 volunteers in both urban and rural areas in Chongqing, China. We found the urban area has a higher pollution level than the rural area, contrasted with better semen quality in the rural residents, especially for sperm morphology and computer assistant semen analysis (CASA) motility parameters. A multivariate linear regression analysis demonstrates that concentrations of PM10, SO2, and NO2 significantly and negatively are associated with normal sperm morphology percentage (P < 0.001) and sperm kinetic parameters. In conclusion, exposure to higher concentrations of PM10, SO2, and NO2 in urban ambient air may account for worse semen quality in urban males.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Análisis de Semen/estadística & datos numéricos , Adulto , China , Exposición a Riesgos Ambientales/análisis , Humanos , Modelos Lineales , Masculino , Material Particulado/análisis , Población Rural/estadística & datos numéricos , Dióxido de Azufre/análisis , Población Urbana/estadística & datos numéricos
13.
Huan Jing Ke Xue ; 28(3): 500-5, 2007 Mar.
Artículo en Zh | MEDLINE | ID: mdl-17633623

RESUMEN

TP, TN, chlorophyll a, potassium permanganate index and secchi depth (SD) and phytoplankton were determined in 15 tributaries of Three Gorges Reservoir. Trophic states were assessed and output fluxes of TN, TP and potassium permanganate index were calculated. The results showed that value of TN, TP, potassium permanganate index, SD and Chla were different in each tributary. SD, TN, TP, potassium permanganate index and Chla value are 0.45 - 1.5 m, 0.65 - 4.27 mg x L(-1), 0.011 - 0.432 mg x L(-1), 0.657 - 5.37 mg x L(-1) and 0.57 - 12.2 mg x m(-3) respectively. The water body of tributaries is polluted at various levels. The concentration of TN is abundant. The rate of TN and TP showed that a part of tributaries eutrophication are limited by TP. Utilizing the method of integrated nutrition state index, it assessed the trophic states degree of tributaries. All of the studied tributaries, 3 tributaries are eutropher, 10 tributaries are mesotropher and 2 tributaries are oligotropher respectively. 129 species of phytoplankton are identified, which belongs to 7 division and 67 genera. The dominant species are Bacillariophyceae, Chiorophyceae and Cyanophyta. The type of phytoplankton community is Bacillariophyceae-Chlorophyceaetype, Bacillariophyceae-Cyanophytatype and Cyanophyta-Chlorophyceaetype. The species and numbers of phytoplankton are various in different tributaries. The nutritive peculiarity belongs to responding type of phytoplankton. The nutrient fluxes load was calculated by discharge and concentration of each tributary. The nutrient fluxes load of TN, TP and potassium permanganate index are 3.14 x 10(5) t, 1.76 x 10(4) t and 2.74 x 10(5) t respectively in one year. After the Three Gorges Dam was completed in 2009, eutrophication trend of tributaries estuaries would be more serious with the decreasing of flow velocity.


Asunto(s)
Fósforo/análisis , Fitoplancton/crecimiento & desarrollo , Permanganato de Potasio/análisis , Contaminantes del Agua/análisis , China , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA