Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38128537

RESUMEN

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Asunto(s)
Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Reparación del ADN por Recombinación , Humanos , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Ácido Láctico/metabolismo
2.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
3.
Mol Cell ; 81(19): 4076-4090.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375582

RESUMEN

KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores Enzimáticos/farmacología , Mutación , Neoplasias/tratamiento farmacológico , Fosfoproteínas/metabolismo , Proteoma , Proteómica , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Bases de Datos Genéticas , Sinergismo Farmacológico , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Espectrometría de Masas , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosfoproteínas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852321

RESUMEN

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Isquemia Miocárdica , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proteómica , Mitofagia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Quinasas Asociadas a rho
5.
Acta Pharmacol Sin ; 45(6): 1305-1315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383757

RESUMEN

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Histona Desacetilasas , Neoplasias , Proteómica , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Acta Pharmacol Sin ; 43(12): 3112-3129, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36372853

RESUMEN

Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Espectrometría de Masas , Proteínas , Descubrimiento de Drogas
7.
Mol Cell Proteomics ; 18(2): 391-405, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30420486

RESUMEN

The open (mass tolerant) search of tandem mass spectra of peptides shows great potential in the comprehensive detection of post-translational modifications (PTMs) in shotgun proteomics. However, this search strategy has not been widely used by the community, and one bottleneck of it is the lack of appropriate algorithms for automated and reliable post-processing of the coarse and error-prone search results. Here we present PTMiner, a software tool for confident filtering and localization of modifications (mass shifts) detected in an open search. After mass-shift-grouped false discovery rate (FDR) control of peptide-spectrum matches (PSMs), PTMiner uses an empirical Bayesian method to localize modifications through iterative learning of the prior probabilities of each type of modification occurring on different amino acids. The performance of PTMiner was evaluated on three data sets, including simulated data, chemically synthesized peptide library data and modified-peptide spiked-in proteome data. The results showed that PTMiner can effectively control the PSM FDR and accurately localize the modification sites. At 1% real false localization rate (FLR), PTMiner localized 93%, 84 and 83% of the modification sites in the three data sets, respectively, far higher than two open search engines we used and an extended version of the Ascore localization algorithm. We then used PTMiner to analyze a draft map of human proteome containing 25 million spectra from 30 tissues, and confidently identified over 1.7 million modified PSMs at 1% FDR and 1% FLR, which provided a system-wide view of both known and unknown PTMs in the human proteome.


Asunto(s)
Péptidos/química , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Bases de Datos de Proteínas , Humanos , Motor de Búsqueda , Programas Informáticos
8.
J Proteome Res ; 19(9): 3697-3707, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32692179

RESUMEN

Type III interferon (IFN-λ) is currently considered to be largely nonredundant to type I interferon (IFN-α) in antivirus infection, especially in epithelial cells. Previous studies reported that, compared with IFN-α, IFN-λ exhibited stronger induction of interferon-stimulated genes (ISGs) at the transcriptional level in intestinal epithelial cells and stronger inhibition of porcine epidemic diarrhea virus (PEDV). In this study, the different mechanisms of ISG upregulation induced by IFN-α and IFN-λ1 were compared at the mRNA and protein levels in the porcine intestinal epithelial cell model (IPEC-J2). It was proved that IFN-λ1 consistently exhibited stronger stimulation effects at both levels. At the mRNA level, 132 genes were significantly upregulated upon IFN-λ1 stimulation, while 42 genes upon IFN-α stimulation. At the protein level, 47 proteins were significantly upregulated upon IFN-λ1 stimulation, but only 8 proteins were upregulated upon IFN-α stimulation. The shared upregulated genes/proteins by IFN-λ1 in both transcriptional and translational omics, especially the regulation factors of ISG15, were involved in the JAK-STAT signaling pathway. Compared to IFN-α, IFN-λ1 could induce more consistent upregulation of the key ISGs (ISG15, USP18, OASL, and RSAD2) at 3-24 h postinduction as measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. It was further confirmed through functional analysis that ISG15 and RSAD2 could inhibit PEDV infection in dose-dependent manners. This study provided solid evidence that IFN-λ1 could induce a more unique and higher ISG expression level, which exhibited anti-PEDV effects on porcine intestinal epithelial cells.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/veterinaria , Células Epiteliales , Virus de la Diarrea Epidémica Porcina/genética , Proteómica , Porcinos , Transcriptoma
9.
Rapid Commun Mass Spectrom ; 34(2): e8573, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31484223

RESUMEN

RATIONALE: Lys-N, also known as lysine-specific metalloendopeptidase, functions as the "sister" enzyme of lysyl endopeptidase (Lys-C) in proteomic research. Its digestion specificity at the N-terminal lysine residue makes it a very useful tool in proteomics analysis, especially in mass spectrometry (MS)-based de novo sequencing of proteins. METHODS: Here we present a complete production process of highly purified Lys-N from dry fruit of Grifola frondosa (maitake mushroom). The purification process includes one step of microfiltration plus one step of UF/DF (ultrafiltration used in tandem with a diafiltration method) recovery and four steps of chromatographic purification. RESULTS: The overall yield of the process was approximately 6.7 mg Lys-N protein/kg dry fruit of G. frondosa. The assay data demonstrated that the purified Lys-N exhibited high enzymatic activity and specificity. CONCLUSIONS: The novel production process provides for the first time the extraction of Lys-N from dry fruit of G. frondosa. The process is also stable and scalable, and provides an economic way of producing the enzyme in large quantities for MS-based proteomics and other biological studies.


Asunto(s)
Cuerpos Fructíferos de los Hongos/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Grifola/enzimología , Metaloendopeptidasas/química , Metaloendopeptidasas/aislamiento & purificación , Serina Endopeptidasas/química , Digestión , Cuerpos Fructíferos de los Hongos/química , Grifola/química , Proteómica , Serina Endopeptidasas/aislamiento & purificación
10.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32210356

RESUMEN

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Mitofagia/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Talidomida/análogos & derivados , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Sinergismo Farmacológico , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Rotenona/farmacología , Talidomida/farmacología , Ubiquitinación/efectos de los fármacos
11.
Anal Chem ; 91(22): 14522-14529, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31634432

RESUMEN

Global identification of protein C-termini is highly challenging due to their low abundance in conventional shotgun proteomics. Several enrichment strategies have been developed to facilitate the detection of C-terminal peptides. One major issue of previous approaches is the limited C-terminome coverage. Herein, we integrated LysargiNase digestion, chemical acetylation on neo-N-terminus, and a-ion-aided peptide matching into poly(allylamine)-based C-terminomics (termed as LAACTer). In this strategy, we leveraged LysargiNase, a protease with cleavage specificity N-terminal to Lys and Arg residues, to cover previously unidentifiable C-terminome and employed chemical acetylation and a-ion-aided peptide matching to efficiently boost peptide identifications. Triplicates of LAACTer identified a total of 834 C-termini from proteome of 293T cell, which expanded the coverage by 164% (643 more unique C-termini) compared with the parallel experiments using the original workflow. Compared with the largest human C-terminome data sets (containing 800-900 C-termini), LAACTer not only achieved comparable profiling depth but also yielded 465 previously unidentified C-termini. In a SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative study for identification of GluC-cleaved products, LAACTer quantified 300% more C-terminal peptides than the original workflow. Using LAACTer and the original workflow, we performed global analysis for the C-terminal sequences of 293T cell. The original and processed C-termini displayed distinct sequence patterns, implying the "C-end rules" that regulates protein stability could be more complex than just amino acid motifs. In conclusion, we reason LAACTer could be a powerful proteomic tool for in-depth C-terminomics and would benefit better functional understanding of protein C-termini.


Asunto(s)
Metaloproteasas/química , Dominios Proteicos , Proteoma/análisis , Línea Celular , Humanos , Marcaje Isotópico , Methanosarcina/enzimología , Proteolisis , Proteoma/química , Proteómica/métodos
12.
EMBO J ; 33(1): 46-61, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24366945

RESUMEN

Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48-linked polyubiquitination by ER-associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER-associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48-linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER-associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self-association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48-linked ubiquitin chains.


Asunto(s)
Poliubiquitina/biosíntesis , Multimerización de Proteína , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Línea Celular , Análisis Mutacional de ADN , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Enzimas Ubiquitina-Conjugadoras/genética
13.
J Proteome Res ; 16(9): 3460-3469, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28730820

RESUMEN

Lysine methylation plays important roles in structural and functional regulation of chromatin. Although trypsin is the most widely used protease in mass spectrometry-based proteomic analysis for lysine methylation substrates, the proteolytic activity of trypsin on dimethylated lysine residues remains an arguable issue. In this study, we tested the ability of trypsin to cleave dimethylated lysine residues in synthetic peptides, purified albumin, and whole cell lysate, and found that the C-terminal of dimethylated lysine residue could be cleaved in a protein sequence-dependent manner. Kinetic studies revealed that the optimal digestion time and enzyme-to-substrate ratio for the cleavage of dimethylated lysine by trypsin was around 16 h and 1:50, respectively. We further showed the tryptic C-terminal lysine-dimethylated (C-Kme2) peptides could contribute to a significant portion of substrate identification in the proteomic study, which utilizes the chemical dimethylation labeling approach. More than 120 tryptic C-Kme2 peptides (7% of total peptides identified) were identified in chemically lysine-dimethyl-labeled HeLa whole cell lysate by a single-shot nanoflow high performance liquid chromatography with tandem mass spectrometry (nano-HPLC-MS/MS) analysis. Moreover, in an assay for substrate identification of protease Glu-C using stable isotope dimethyl labeling approach, our data showed the tryptic C-Kme2 peptides accounted for more than 13% of total tryptic peptides. Additionally, our in vivo methylome profiling data revealed some C-Kme2 peptides, which is of importance to identification and quantification of biologically relevant protein and lysine-methylated site. Therefore, we reason that the tryptic peptides bearing C-terminal dimethylated lysine need to be considered in the mass spectrometric analysis of lysine dimethylation.


Asunto(s)
Lisina/metabolismo , Fragmentos de Péptidos/análisis , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Células HeLa , Humanos , Marcaje Isotópico/métodos , Cinética , Lisina/química , Metilación , Proteolisis , Serina Endopeptidasas/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Espectrometría de Masas en Tándem , Tripsina/química
14.
J Proteome Res ; 15(6): 2060-71, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27183143

RESUMEN

Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria.


Asunto(s)
Metabolismo Energético , Escherichia coli/metabolismo , Lisina/metabolismo , Malonatos/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ciclo del Ácido Cítrico , Biología Computacional , Ácidos Grasos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos
15.
J Proteome Res ; 15(12): 4696-4708, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27804304

RESUMEN

Propionylation at protein lysine residue is characterized to be present in both eukaryotic and prokaryotic species. However, the majority of lysine propionylation substrates still remain largely unknown. Using affinity enrichment and mass-spectrometric-based proteomics, we identified 1467 lysine propionylation sites in 603 proteins in E. coli. Quantitative propionylome analysis further revealed that global lysine propionylation level was drastically increased in response to propionate treatment, a carbon source for many microorganisms and also a common food preservative. The results indicated that propionylation may play a regulatory role in propionate metabolism and propionyl-CoA degradation. In contrast with lysine acetylation and succinylation, our results revealed that the lysine propionylation level of substrates showed an obvious decrease in response to high glucose, suggesting a distinct role of propionylation in bacteria carbohydrate metabolism. This study further showed that bacterial lysine deacetylase CobB and acetyltransferase PatZ could also have regulatory activities for lysine propionylation in E. coli. Our quantitative propionylation substrate analysis between cobB wild-type and cobB knockout strain led to the identification of 13 CobB potentially regulated propionylation sites. Together, these findings revealed the broad propionylation substrates in E. coli and suggested new roles of lysine propionylation in bacterial physiology.


Asunto(s)
Escherichia coli/metabolismo , Lisina/metabolismo , Propionatos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Acetiltransferasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Sirtuinas/fisiología
16.
Proteomics ; 14(2-3): 286-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24259522

RESUMEN

Drosophila melanogaster is one of the most widely used model organisms in life sciences. Mapping its proteome is of great significance for understanding the biological characteristics and tissue functions of this species. However, the comprehensive coverage of its proteome remains a challenge. Here, we describe a high-coverage analysis of whole fly through a 1D gel electrophoresis and LC-MS/MS approach. By combining the datasets of two types of SDS-PAGE and two kinds of tagmata, the high-coverage analysis resulted in the identification of 5262 genes, which correspond to 38.23% of the entire coding genes. Moreover, we found that the fly head and body have different molecular weight distributions of their proteomes when the proteins were resolved with SDS-PAGE and image analysis of the stained gel. This phenomenon was further confirmed by both label-free and isobaric tags for relative and absolute quantitation-based quantitative approaches. The consistent results of the two different quantitation methods also demonstrated the stability and accuracy of the LC-MS/MS platform. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD000454 and PXD000455 (http://proteomecentral.proteomexchange.org/dataset/PXD000454; (http://proteomecentral.proteomexchange.org/dataset/PXD000455).


Asunto(s)
Proteínas de Drosophila/análisis , Drosophila melanogaster/química , Proteoma/análisis , Animales , Electroforesis en Gel de Poliacrilamida , Masculino , Proteómica , Espectrometría de Masas en Tándem
17.
J Proteome Res ; 13(1): 268-76, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23862649

RESUMEN

The ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) is uniquely expressed in mammals. The fat10 gene is encoded in the MHC class I locus in the human genome and is related to some specific processes, such as apoptosis, immune response, and cancer. However, biological knowledge of FAT10 is limited, owing to the lack of identification of its conjugates. FAT10 covalently modifies proteins in eukaryotes, but only a few substrates of FAT10 have been reported until now, and no FATylated sites have been identified. Here, we report the proteome-scale identification of FATylated proteins by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 175 proteins with high confidence as FATylated candidates. A total of 13 modified sites were identified for the first time by a modified search of the raw MS data. The modified sites were highly enriched with hydrophilic amino acids. Furthermore, the FATylation processes of hnRNP C2, PCNA, and PDIA3 were verified by a coimmunoprecipitation assay. We confirmed that most of the substrates were covalently attached to a FAT10 monomer. The functional distribution of the FAT10 targets suggests that FAT10 participates in various biological processes, such as translation, protein folding, RNA processing, and macromolecular complex assembly. These results should be very useful for investigating the biological functions of FAT10.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica , Ubiquitinas/genética , Secuencia de Aminoácidos , Cromatografía de Afinidad , Células HeLa , Humanos , Datos de Secuencia Molecular , Ubiquitinas/química
18.
J Proteome Res ; 13(1): 38-49, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24256510

RESUMEN

To estimate the potential of the state-of-the-art proteomics technologies on full coverage of the encoding gene products, the Chinese Human Chromosome Proteome Consortium (CCPC) applied a multiomics strategy to systematically analyze the transciptome, translatome, and proteome of the same cultured hepatoma cells with varied metastatic potential qualitatively and quantitatively. The results provide a global view of gene expression profiles. The 9064 identified high confident proteins covered 50.2% of all gene products in the translatome. Those proteins with function of adhesion, development, reproduction, and so on are low abundant in transcriptome and translatome but absent in proteome. Taking the translatome as the background of protein expression, we found that the protein abundance plays a decisive role and hydrophobicity has a greater influence than molecular weight and isoelectric point on protein detectability. Thus, the enrichment strategy used for low-abundant transcription factors helped to identify missing proteins. In addition, those peptides with single amino acid polymorphisms played a significant role for the disease research, although they might negligibly contribute to new protein identification. The proteome raw and metadata of proteome were collected using the iProX submission system and submitted to ProteomeXchange (PXD000529, PXD000533, and PXD000535). All detailed information in this study can be accessed from the Chinese Chromosome-Centric Human Proteome Database.


Asunto(s)
Biosíntesis de Proteínas , Proteoma , Transcriptoma , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas
19.
J Proteome Res ; 13(1): 114-25, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24256544

RESUMEN

Our first proteomic exploration of human chromosome 1 began in 2012 (CCPD 1.0), and the genome-wide characterization of the human proteome through public resources revealed that 32-39% of proteins on chromosome 1 remain unidentified. To characterize all of the missing proteins, we applied an OMICS-integrated analysis of three human liver cell lines (Hep3B, MHCC97H, and HCCLM3) using mRNA and ribosome nascent-chain complex-bound mRNA deep sequencing and proteome profiling, contributing mass spectrometric evidence of 60 additional chromosome 1 gene products. Integration of the annotation information from public databases revealed that 84.6% of genes on chromosome 1 had high-confidence protein evidence. Hierarchical analysis demonstrated that the remaining 320 missing genes were either experimentally or biologically explainable; 128 genes were found to be tissue-specific or rarely expressed in some tissues, whereas 91 proteins were uncharacterized mainly due to database annotation diversity, 89 were genes with low mRNA abundance or unsuitable protein properties, and 12 genes were identifiable theoretically because of a high abundance of mRNAs/RNC-mRNAs and the existence of proteotypic peptides. The relatively large contribution made by the identification of enriched transcription factors suggested specific enrichment of low-abundance protein classes, and SRM/MRM could capture high-priority missing proteins. Detailed analyses of the differentially expressed genes indicated that several gene families located on chromosome 1 may play critical roles in mediating hepatocellular carcinoma invasion and metastasis. All mass spectrometry proteomics data corresponding to our study were deposited in the ProteomeXchange under the identifiers PXD000529, PXD000533, and PXD000535.


Asunto(s)
Cromosomas Humanos Par 1 , Proteínas/genética , Línea Celular Tumoral , Humanos , Proteómica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38862432

RESUMEN

Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.


Asunto(s)
Histonas , Lisina , Procesamiento Proteico-Postraduccional , Lisina/metabolismo , Humanos , Histonas/metabolismo , Animales , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA