Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 191: 106406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199273

RESUMEN

BACKGROUND: Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS: A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS: Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION: Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.


Asunto(s)
Acoplamiento Neurovascular , Enfermedad de Parkinson , Humanos , Levodopa/farmacología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Putamen , Circulación Cerebrovascular , Dopamina
2.
Neurobiol Dis ; 194: 106472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479482

RESUMEN

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Asunto(s)
Enfermedad de Parkinson , Pindolol/análogos & derivados , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/complicaciones , Encuestas y Cuestionarios
3.
Eur J Neurol ; : e16521, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39425566

RESUMEN

BACKGROUND AND PURPOSE: Glymphatic dysfunction may play a significant role in the development of neurodegenerative diseases. We aimed to evaluate the association between glymphatic dysfunction and the risk of malignant event/clinical milestones in Parkinson disease (PD). METHODS: This study included 236 patients from August 2014 to December 2020. Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index was calculated as an approximate measure of glymphatic function. The primary outcomes were four clinical milestones including recurrent falls, wheelchair dependence, dementia, and placement in residential or nursing home care. The associations of DTI-ALPS with the risk of clinical milestones were examined using multivariate Cox proportional hazards regression models. Then, logistic regression was repeated using clinical variables and DTI-ALPS index individually and in combination of the two to explore the ability to distinguish patients who reached clinical milestones within a 5-year period. RESULTS: A total of 175 PD patients with baseline DTI-ALPS index and follow-up clinical assessments were included. A lower DTI-ALPS was independently associated with increased risk of recurrent falls, wheelchair dependence, and dementia. Additionally, in 103 patients monitored over 5 years, a logistic regression model combining clinical variables and DTI-ALPS index showed better performance for predicting wheelchair dependence within 5 years than a model using clinical variables or DTI-ALPS index alone. CONCLUSIONS: Glymphatic dysfunction, as measured by the DTI-ALPS index, was associated with increased risk of clinical milestones in patients with PD. This finding implies that therapy targeting the glymphatic system may serve as a viable strategy for slowing down the progression of PD.

4.
Eur J Neurol ; 31(2): e16108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37877681

RESUMEN

BACKGROUND AND PURPOSE: The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS: A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS: Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS: Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.


Asunto(s)
Prosencéfalo Basal , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Imagen de Difusión Tensora , Prosencéfalo Basal/diagnóstico por imagen , Atención , Marcha , Agua , Colinérgicos , Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/etiología , Equilibrio Postural/fisiología
5.
Exp Brain Res ; 242(1): 25-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37910178

RESUMEN

Parkinson's disease (PD) is one of the most common and complex Neurodegeneration, with an inherited metabolic disorder. Fibroblast growth factor 21 (FGF21), an endocrine hormone that belongs to the fibroblast growth factor superfamily, plays an extensive role in metabolic regulation. However, our understandings of the specific function and mechanisms of FGF21 on PD are still quite limited. Here, we aimed to elucidate the actions and the underlying mechanisms of FGF21 on dopaminergic neurodegeneration using cellular models of parkinsonism. To investigate the effects of FGF21 on dopaminergic neurodegeneration in vitro, proteasome impairment models of PD were utilized. Human dopaminergic neuroblastoma SH-SY5Y cells were treated with the proteasome inhibitor lactacystin (5 µmol/L) for 12 h, then with 50 ng/ml FGF-21 with or without 5 mmol/L of 3-methyladenine.The cells were dissected to assess alterations in autophagy using immunofluorescence, immunoblotting and electron microscopy assays. Our data indicate that FGF21 prevents dopaminergic neuron loss and shows beneficial effects against proteasome impairment induced PD syndrome, indicating it might be a potent candidate for developing novel drugs to deal with PD.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Autofagia , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227102

RESUMEN

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Asunto(s)
Temblor Esencial , Ataxias Espinocerebelosas , Humanos , Temblor Esencial/epidemiología , Temblor Esencial/genética , China/epidemiología , Ataxias Espinocerebelosas/epidemiología , Ataxias Espinocerebelosas/genética , Nucleótidos
7.
Eur Arch Otorhinolaryngol ; 281(1): 397-409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37656222

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS: Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS: Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS: Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/genética , Pronóstico , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/genética
8.
Neurobiol Dis ; 180: 106084, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931531

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) could develop preceding or come after motor symptoms during Parkinson's disease (PD). It remains unknown that whether PD with different timing of RBD onset relative to motor symptoms suggests different spatiotemporal sequence of neurodegeneration. This study aimed to explore the sequence of disease progression in crucially involved brain regions in PD with different timing of RBD onset. METHOD: We recruited 157 PD, 16 isolated RBD (iRBD), and 78 healthy controls. PD patients were identified as (1) PD with RBD preceding motor symptoms (PD-preRBD, n = 50), (2) PD with RBD posterior to motor symptoms (PD-postRBD, n = 31), (3) PD without RBD (PD-nonRBD, n = 75). The volumes of crucial brain regions, including the basal ganglia and limbic structures in T1-weighted imaging, and the contrast-noise-ratios of locus coeruleus (LC) and substantia nigra (SN) in neuromelanin-sensitive magnetic resonance imaging, were extracted. To simulate the sequence of disease progression for cross-sectional data, an event-based model was introduced to estimate the maximum likelihood sequence of regions' involvement for each group. Then, a statistical parameter, the Bhattacharya coefficient (BC), was used to evaluate the similarity of the sequence. RESULTS: The model predicted that SN occupied the highest likelihood in the maximum likelihood sequence of disease progression in the all PD subgroups, while LC was specifically positioned earlier to SN in iRBD, a prodromal phase of PD. Subsequent early involvement of LC was observed in the both PD-preRBD and PD-postRBD. In contrast, atrophy in the para-hippocampal gyrus but relatively intact LC in the early stage was demonstrated in PD-nonRBD. Then, the similarity comparisons indicated higher BC between PD-postRBD and PD-preRBD (BC = 0.76) but lower BC between PD-postRBD and PD-nonRBD group (BC = 0.41). iRBD had higher BC against PD-preRBD (BC = 0.66) and PD-postRBD (BC = 0.63) but lower BC against PD- nonRBD (BC = 0.48). CONCLUSION: The spatiotemporal sequence of neurodegeneration between PD-pre and PD-post were similar but distinct from PD-nonRBD. The presence of RBD may be the essential factor for differentiating the degeneration patterns of PD, but the timing of RBD onset has currently proved to be not.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/patología , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Progresión de la Enfermedad
9.
Neurobiol Dis ; 184: 106216, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385459

RESUMEN

Gait impairment is a common symptom of Parkinson's disease (PD), but its neural signature remains unclear due to the interindividual variability of gait performance. Identifying a robust gait-brain correlation at the individual level would provide insight into a generalizable neural basis of gait impairment. In this context, this study aimed to detect connectome that can predict individual gait function of PD, and follow-up analyses assess the molecular architecture underlying the connectome by relating it to the neurotransmitter-receptor/transporter density maps. Resting-state functional magnetic resonance imaging was used to detect the functional connectome, and gait function was assessed via a 10 m-walking test. The functional connectome was first detected within drug-naive patients (N = 48) by using connectome-based predictive modeling following cross-validation and then successfully validated within drug-managed patients (N = 30). The results showed that the motor, subcortical, and visual networks played an important role in predicting gait function. The connectome generated from patients failed to predict the gait function of 33 normal controls (NCs) and had distinct connection patterns compared to NCs. The negative connections (connection negatively correlated with 10 m-walking-time) pattern of the PD connectome was associated with the density of the D2 receptor and VAChT transporter. These findings suggested that gait-associated functional alteration induced by PD pathology differed from that induced by aging degeneration. The brain dysfunction related to gait impairment was more commonly found in regions expressing more dopaminergic and cholinergic neurotransmitters, which may aid in developing targeted treatments.


Asunto(s)
Conectoma , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Marcha
10.
Hum Brain Mapp ; 44(9): 3845-3858, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126590

RESUMEN

Dopamine replacement therapy (DRT) represents the standard treatment for Parkinson's disease (PD), however, instant and long-term medication influence on patients' brain function have not been delineated. Here, a total of 97 drug-naïve patients, 43 patients under long-term DRT, and 94 normal control (NC) were, retrospectively, enrolled. Resting-state functional magnetic resonance imaging data and motor symptom assessments were conducted before and after levodopa challenge test. Whole-brain functional connectivity (FC) matrices were constructed. Network-based statistics were performed to assess FC difference between drug-naïve patients and NC, and these significant FCs were defined as disease-related connectomes, which were used for further statistical analyses. Patients showed better motor performances after both long-term DRT and levodopa challenge test. Two disease-related connectomes were observed with distinct patterns. The FC of the increased connectome, which mainly consisted of the motor, visual, subcortical, and cerebellum networks, was higher in drug-naïve patients than that in NC and was normalized after long-term DRT (p-value <.050). The decreased connectome was mainly composed of the motor, medial frontal, and salience networks and showed significantly lower FC in all patients than NC (p-value <.050). The global FC of both increased and decreased connectome was significantly enhanced after levodopa challenge test (q-value <0.050, false discovery rate-corrected). The global FC of increased connectome in ON-state was negatively associated with levodopa equivalency dose (r = -.496, q-value = 0.007). Higher global FC of the decreased connectome was related to better motor performances (r = -.310, q-value = 0.022). Our findings provided insights into brain functional alterations under dopaminergic medication and its benefit on motor symptoms.


Asunto(s)
Conectoma , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/complicaciones , Dopamina , Levodopa/uso terapéutico , Levodopa/farmacología , Conectoma/métodos , Estudios Retrospectivos , Encéfalo , Imagen por Resonancia Magnética/métodos
11.
J Neuroinflammation ; 20(1): 26, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740674

RESUMEN

BACKGROUND: Inflammasome activation has a pathogenic role in Parkinson's disease (PD). Up-regulated expressions of inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and assembly of ASC specks have been observed in postmortems of human PD brains and experimental PD models. Extracellular ASC specks behave like danger signals and sustain prolonged inflammasome activation. However, the contribution of ASC specks in propagation of inflammasome activation and pathological progression in PD has not been fully established. METHODS: Herein, we used human A53T mutant α-synuclein preformed fibrils (PFFs)-stimulated microglia in vitro and unilateral striatal stereotaxic injection of PFFs-induced mice model of PD in vivo, to investigate the significance of ASC specks in PD pathological progression. Rotarod and open-field tests were performed to measure motor behaviors of indicated mice. Changes in the molecular expression were evaluated by immunofluorescence and immunoblotting (IB). Intracellular knockdown of the ASC in BV2 cells was performed using si-RNA. Microglial and neuronal cells were co-cultured in a trans-well system to determine the effects of ASC knockdown on cytoprotection. RESULTS: We observed a direct relationship between levels of ASC protein and misfolded α­synuclein aggregates in PD mice brains. ASC specks amplified NLRP3 inflammasome activation driven by α-synuclein PFFs stimulation, which aggravated reactive microgliosis and accelerated α­synuclein pathology, dopaminergic neurodegeneration and motor deficits. Endogenous ASC knockdown suppressed microglial inflammasome activation and neuronal α­synuclein aggregation. CONCLUSIONS: In conclusion, our study elucidated that ASC specks contribute to the propagation of inflammasome activation-associated α­synuclein pathology in PD, which forms the basis for targeting ASC as a potential therapy for PD.


Asunto(s)
Inflamasomas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo
12.
Mov Disord ; 38(7): 1273-1281, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166002

RESUMEN

BACKGROUND: The degeneration of nigral (A9) dopaminergic (DA) neurons results in cardinal motor symptoms that define Parkinson's disease (PD). Loss-of-function mutations in parkin are linked to a rare form of early-onset PD that is inherited recessively. OBJECTIVE: We generated isogenic human A9 DA neurons with or without parkin mutations to establish the causal relationship between parkin mutations and the dysfunction of human A9 DA neurons. METHODS: Using TALEN (transcription activator-like effector nuclease)- or CRISPR/Cas9-mediated gene targeting, we produced two isogenic pairs of naivetropic induced pluripotent stem cells (iPSCs) by repairing exon 3 deletions of parkin in iPSCs derived from a PD patient and by introducing the PD-linked A82E mutation into iPSCs from a healthy subject. The four lines of isogenic iPSCs were differentiated to A9 DA neurons, which fired spontaneous pacemaking action potentials (AP) dependent on L-type Ca2+ channels. RESULTS: The frequency of the pacemaking APs was significantly reduced by parkin mutations introduced to normal neurons. Consistent with this, isogenic repair of parkin mutations significantly increased the frequency from that observed in patient-derived neurons. CONCLUSIONS: The results show that parkin maintains robust pacemaking in human iPSC-derived A9 DA neurons. The function is critical to normal DA transmission required for controlling voluntary locomotor activities. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Eur Radiol ; 33(11): 8057-8066, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37284868

RESUMEN

OBJECTIVES: Venous pathology could contribute to the development of parenchymal lesions in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aim to identify presumed periventricular venous infarction (PPVI) in CADASIL and analyze the associations between PPVI, white matter edema, and microstructural integrity within white matter hyperintensities (WMHs) regions. METHODS: We included forty-nine patients with CADASIL from a prospectively enrolled cohort. PPVI was identified according to previously established MRI criteria. White matter edema was evaluated using the free water (FW) index derived from diffusion tensor imaging (DTI), and microstructural integrity was evaluated using FW-corrected DTI parameters. We compared the mean FW values and regional volumes with different levels of FW (ranging from 0.3 to 0.8) in WMHs regions between the PPVI and non-PPVI groups. We used intracranial volume to normalize each volume. We also analyzed the association between FW and microstructural integrity in fiber tracts connected with PPVI. RESULTS: We found 16 PPVIs in 10 of 49 CADASIL patients (20.4%). The PPVI group had larger WMHs volume (0.068 versus 0.046, p = 0.036) and higher FW in WMHs (0.55 versus 0.52, p = 0.032) than the non-PPVI group. Larger areas with high FW content were also found in the PPVI group (threshold: 0.7, 0.47 versus 0.37, p = 0.015; threshold: 0.8, 0.33 versus 0.25, p = 0.003). Furthermore, higher FW correlated with decreased microstructural integrity (p = 0.009) in fiber tracts connected with PPVI. CONCLUSIONS: PPVI was associated with increased FW content and white matter degeneration in CADASIL patients. CLINICAL RELEVANCE STATEMENT: PPVI is an important factor related with WMHs, and therefore, preventing the occurrence of PPVI would be beneficial for patients with CADASIL. KEY POINTS: •Presumed periventricular venous infarction is important and occurs in about 20% of patients with CADASIL. •Presumed periventricular venous infarction was associated with increased free water content in the regions of white matter hyperintensities. •Free water correlated with microstructural degenerations in white matter tracts connected with the presumed periventricular venous infarction.


Asunto(s)
CADASIL , Sustancia Blanca , Humanos , CADASIL/complicaciones , CADASIL/diagnóstico por imagen , CADASIL/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos , Edema/patología , Agua , Encéfalo/patología
14.
Eur J Neurol ; 30(11): 3462-3470, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36694359

RESUMEN

BACKGROUND AND PURPOSE: Intestinal inflammation and gut microbiota dysbiosis contribute to Parkinson disease (PD) pathogenesis, and growing evidence suggests associations between inflammatory bowel diseases (IBD) and PD. Considered as markers of chronic gastrointestinal inflammation, elevated serum anti-Saccharomyces cerevisiae antibody (ASCA) levels, against certain gut fungal components, are related to IBD, but their effect on PD is yet to be investigated. METHODS: Serum ASCA IgG and IgA levels were measured using an enzyme-linked immunosorbent assay, and the gut mycobiota communities were investigated using ITS2 sequencing and analyzed using the Qiime pipeline. RESULTS: The study included 393 subjects (148 healthy controls [HCs], 140 with PD, and 105 with essential tremor [ET]). Both serum ASCA IgG and IgA levels were significantly higher in the PD group than in the ET and HC groups. Combining serum ASCA levels and the occurrence of constipation could discriminate patients with PD from controls (area under the curve [AUC] = 0.81, 95% confidence interval [CI] = 0.76-0.86) and from patients with ET (AUC = 0.85, 95% CI = 0.79-0.89). Furthermore, the composition of the gut fungal community differed between the PD and HC groups. The relative abundances of Saccharomyces cerevisiae, Aspergillus, Candida solani, Aspergillus flavus, ASV601_Fungi, ASV866_Fungi, and ASV755_Fungi were significantly higher in the PD group, and enriched Malassezia restricta was found in the HC group. CONCLUSIONS: Our study identified elevated serum ASCA levels and enriched gut Saccharomyces cerevisiae in de novo PD.

15.
Neurol Sci ; 44(9): 3189-3197, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37099235

RESUMEN

BACKGROUND: Neuronal intranuclear inclusion disease (NIID) is a great imitator with a broad spectrum of clinical manifestations that include dementia, parkinsonism, paroxysmal symptoms, peripheral neuropathy, and autonomic dysfunction. Hence, it may also masquerade as other diseases such as Alzheimer's disease, Parkinson's disease, and Charcot-Marie-Tooth disease. Recent breakthroughs on neuroimaging, skin biopsy, and genetic testing have facilitated the diagnosis. However, early identification and effective treatment are still difficult in cases of NIID. OBJECTIVE: To further study the clinical characteristics of NIID and investigate the relationship between NIID and inflammation. METHODS: We systematically evaluated the clinical symptoms, signs, MRI and electromyographical findings, and pathological characteristics of 20 NIID patients with abnormal GGC repeats in the NOTCH2NLC gene. Some inflammatory factors in the patients were also studied. RESULTS: Paroxysmal symptoms such as paroxysmal encephalopathy, stroke-like episodes, and mitochondrial encephalomyopathy lactic acidosis and stroke (MELAS)-like episode were the most common phenotypes. Other symptoms such as cognitive dysfunction, neurogenic bladder, tremor, and vision disorders were also suggestive of NIID. Interestingly, not all patients showed apparent diffusion-weighted imaging (DWI) abnormality or intranuclear inclusions, while abnormal GGC repeats of NOTCH2NLC were seen in all patients. And fevers were noticed in some patients during encephalitic episodes, usually with increasing leukocyte counts and neutrophil ratios. Both IL-6 (p = 0.019) and TNF-α (p = 0.027) levels were significantly higher in the NIID group than in normal controls. CONCLUSION: Genetic testing of NOTCH2NLC may be the best choice in the diagnosis of NIID. Inflammation might be involved in the pathogenesis of NIID.


Asunto(s)
Enfermedad de Alzheimer , Accidente Cerebrovascular , Humanos , Cuerpos de Inclusión Intranucleares/patología , Inflamación/patología , Enfermedad de Alzheimer/patología , Accidente Cerebrovascular/patología
16.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047285

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/genética , Daño del ADN , Reparación del ADN
17.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239999

RESUMEN

DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining. Mechanistically, DJ-1 interacts directly with PARP1, a nuclear enzyme essential for genomic stability, and stimulates its enzymatic activity during DNA repair. Importantly, cells from PD patients with the DJ-1 mutation also have defective PARP1 activity and impaired repair of DSBs. In summary, our findings uncover a novel function of nuclear DJ-1 in DNA repair and genome stability maintenance, and suggest that defective DNA repair may contribute to the pathogenesis of PD linked to DJ-1 mutations.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Reparación del ADN por Unión de Extremidades , Daño del ADN , Mutación , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/genética
18.
Neuroimage ; 264: 119683, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243270

RESUMEN

Brain iron deposition is a promising marker for human brain health, providing insightful information for understanding aging as well as neurodegenerations, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). To comprehensively evaluate brain iron deposition along with aging, PD-related neurodegeneration, from prodromal PD (pPD) to clinical PD (cPD), and AD-related neurodegeneration, from mild cognitive impairment (MCI) to AD, a total of 726 participants from July 2013 to December 2020, including 100 young adults, 189 old adults, 184 pPD, 171 cPD, 31 MCI and 51 AD patients, were included. Quantitative susceptibility mapping data were acquired and used to quantify regional magnetic susceptibility, and the resulting spatial standard deviations were recorded. A general linear model was applied to perform the inter-group comparison. As a result, relative to young adults, old adults showed significantly higher iron deposition with higher spatial variation in all of the subcortical nuclei (p < 0.01). pPD showed a high spatial variation of iron distribution in the subcortical nuclei except for substantia nigra (SN); and iron deposition in SN and red nucleus (RN) were progressively increased from pPD to cPD (p < 0.01). AD showed significantly higher iron deposition in caudate and putamen with higher spatial variation compared with old adults, pPD and cPD (p < 0.01), and significant iron deposition in SN compared with old adults (p < 0.01). Also, linear regression models had significances in predicting motor score in pPD and cPD (Rmean = 0.443, Ppermutation = 0.001) and cognition score in MCI and AD (Rmean = 0.243, Ppermutation = 0.037). In conclusion, progressive iron deposition in the SN and RN may characterize PD-related neurodegeneration, namely aging to cPD through pPD. On the other hand, extreme iron deposition in the caudate and putamen may characterize AD-related neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Adulto Joven , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Hierro , Mapeo Encefálico/métodos
19.
Hum Brain Mapp ; 43(6): 1984-1996, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34970835

RESUMEN

Identifying a whole-brain connectome-based predictive model in drug-naïve patients with Parkinson's disease and verifying its predictions on drug-managed patients would be useful in determining the intrinsic functional underpinnings of motor impairment and establishing general brain-behavior associations. In this study, we constructed a predictive model from the resting-state functional data of 47 drug-naïve patients by using a connectome-based approach. This model was subsequently validated in 115 drug-managed patients. The severity of motor impairment was assessed by calculating Unified Parkinson's Disease Rating Scale Part III scores. The predictive performance of model was evaluated using the correlation coefficient (rtrue ) between predicted and observed scores. As a result, a connectome-based model for predicting individual motor impairment in drug-naïve patients was identified with significant performance (rtrue  = .845, p < .001, ppermu  = .002). Two patterns of connection were identified according to correlations between connection strength and the severity of motor impairment. The negative motor-impairment-related network contained more within-network connections in the motor, visual-related, and default mode networks, whereas the positive motor-impairment-related network was constructed mostly with between-network connections coupling the motor-visual, motor-limbic, and motor-basal ganglia networks. Finally, this predictive model constructed around drug-naïve patients was confirmed with significant predictive efficacy on drug-managed patients (r = .209, p = .025), suggesting a generalizability in Parkinson's disease patients under long-term drug influence. In conclusion, this study identified a whole-brain connectome-based model that could predict the severity of motor impairment in Parkinson's patients and furthers our understanding of the functional underpinnings of the disease.


Asunto(s)
Conectoma , Trastornos Motores , Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen
20.
Hum Brain Mapp ; 43(5): 1598-1610, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904766

RESUMEN

Parkinson's disease (PD) is primarily characterized by the loss of dopaminergic cells and atrophy in subcortical regions. However, the impact of these pathological changes on large-scale dynamic integration and segregation of the cortex are not well understood. In this study, we investigated the effect of subcortical dysfunction on cortical dynamics and cognition in PD. Spatiotemporal dynamics of the phase interactions of resting-state blood-oxygen-level-dependent signals in 159 PD patients and 152 normal control (NC) individuals were estimated. The relationships between subcortical atrophy, subcortical-cortical fiber connectivity impairment, cortical synchronization/metastability, and cognitive performance were then assessed. We found that cortical synchronization and metastability in PD patients were significantly decreased. To examine whether this is an effect of dopamine depletion, we investigated 45 PD patients both ON and OFF dopamine replacement therapy, and found that cortical synchronization and metastability are significantly increased in the ON state. The extent of cortical synchronization and metastability in the OFF state reflected cognitive performance and mediates the difference in cognitive performance between the PD and NC groups. Furthermore, both the thalamic volume and thalamocortical fiber connectivity had positive relationships with cortical synchronization and metastability in the dopaminergic OFF state, and mediate the difference in cortical synchronization between the PD and NC groups. In addition, thalamic volume also reflected cognitive performance, and cortical synchronization/metastability mediated the relationship between thalamic volume and cognitive performance in PD patients. Together, these results highlight that subcortical dysfunction and reduced dopamine levels are responsible for decreased cortical synchronization and metastability, further affecting cognitive performance in PD. This might lead to biomarkers being identified that can predict if a patient is at risk of developing dementia.


Asunto(s)
Enfermedad de Parkinson , Atrofia , Cognición , Sincronización Cortical , Dopamina , Humanos , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA