Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 603(7899): 159-165, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197629

RESUMEN

Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.


Asunto(s)
Hipoglucemiantes , Metformina , ATPasas de Translocación de Protón Vacuolares , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfatasas/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Caenorhabditis elegans/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Glucosa/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Lisosomas/metabolismo , Proteínas de la Membrana , Metformina/agonistas , Metformina/metabolismo , Metformina/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo
2.
Inorg Chem ; 62(2): 1007-1017, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36584325

RESUMEN

Quinolinic acid (QA) is an index for some diseases, whose detection is of importance. This work presents a samarium metal-organic framework (Sm-MOF) containing 5-sulfoisophthalate ligand (SIP3-). The fluorescence of Sm-MOF integrates the emission at 339 nm from the SIP3- ligand and four characteristic 4G5/2 → 4Hj (j = 5/2, 7/2, 9/2, and 11/2) transitions at 559, 596, 642, and 701 nm from Sm(III). Sm-MOF as a turn-off fluorescence sensor to QA exhibits high sensitivity, selectivity, and durability. The fluorescence quenching response to QA shows a linear relationship of I0/I = 0.00496·CQA + 1.12474 in the QA concentration of 0-500 µM and a limit of detection calculated as 4.11 µM. Sm-MOF shows the structural and fluorescent stabilities in five quenching-recovery cycles. The recoveries of close to 100% in human urine and serum indicate high reliability. The paper-based Sm-MOF sensor displays a rough QA quantitative analysis by recognizing red values in the on-site QA detection.


Asunto(s)
Estructuras Metalorgánicas , Samario , Humanos , Samario/química , Ácido Quinolínico , Ligandos , Reproducibilidad de los Resultados , Colorantes Fluorescentes/química , Límite de Detección , Estructuras Metalorgánicas/química
3.
Cell Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898113

RESUMEN

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

4.
J Control Release ; 357: 120-132, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963635

RESUMEN

Rational design and fabrication of small interfering RNA (siRNA) delivery system with simple production scheme, specific targeting capability, responsiveness to endogenous stimuli and potential multi-functionalities remains technically challenging. Herein, we screen and design a virus-mimicking polysaccharide nanocomplex that shows specific gene delivery capability in a selective subset of leukocytes. A virus-inspired poly (alkyl methacrylate-co-methacrylic acid) fragment was conjugated on barley ß-glucans (EEPG) to endow the nanocomplex with pH-dependent endosomal membrane destabilization capabilities, as confirmed both biologically and computationally. siRNA loaded EEPG nanocomplex is feasibly fabricated in a single-step manner, which exhibit efficient gene silencing efficacy towards Dectin-1+ monocytes/macrophages. The inherent targeting affinity and feasible gene silencing potency of EEPG nanocomplex are investigated in three independent murine inflammation models, including myocardial infarction, lung fibrosis and acute liver damage. Significant enhanced accumulation level of EEPG nanocomplex is observed in cardiac lesion site, indicating its exclusive targeting capability for ischemic heart diseases. As a proof of concept, siTGF-ß based gene therapy is confirmed in murine model with heart fibrosis. Overall, our findings suggest the designed EEPG nanocomplex is favorable for siRNA delivery, which might have translational potential as a versatile platform in inflammation-related diseases.


Asunto(s)
Silenciador del Gen , Técnicas de Transferencia de Gen , Ratones , Animales , ARN Interferente Pequeño/genética , Endosomas , Terapia Genética
5.
Cell Rep ; 42(11): 113385, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938975

RESUMEN

PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama , Humanos , Femenino , Metilación , Empalme Alternativo/genética , Transformación Celular Neoplásica/genética , ARN/metabolismo , Neoplasias de la Mama/genética , Exones/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
6.
EMBO Mol Med ; 14(1): e14296, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34845836

RESUMEN

More than 60% of nonsmall cell lung cancer (NSCLC) patients show a positive response to the first ALK inhibitor, crizotinib, which has been used as the standard treatment for newly diagnosed patients with ALK rearrangement. However, most patients inevitably develop crizotinib resistance due to acquired secondary mutations in the ALK kinase domain, such as the gatekeeper mutation L1196M and the most refractory mutation, G1202R. Here, we develop XMU-MP-5 as a new-generation ALK inhibitor to overcome crizotinib resistance mutations, including L1196M and G1202R. XMU-MP-5 blocks ALK signaling pathways and inhibits the proliferation of cells harboring either wild-type or mutant EML4-ALK in vitro and suppresses tumor growth in xenograft mouse models in vivo. Structural analysis provides insights into the mode of action of XMU-MP-5. In addition, XMU-MP-5 induces significant regression of lung tumors in two genetically engineered mouse (GEM) models, further demonstrating its pharmacological efficacy and potential for clinical application. These preclinical data support XMU-MP-5 as a novel selective ALK inhibitor with high potency and selectivity. XMU-MP-5 holds great promise as a new therapeutic against clinically relevant secondary ALK mutations.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217034

RESUMEN

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Asunto(s)
Insulinas , Inanición , Humanos , Masculino , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Lisosomas/metabolismo , Inanición/metabolismo , Adenosina Trifosfatasas/metabolismo , Caenorhabditis elegans , Adenosina Monofosfato/metabolismo , Fructosa/metabolismo , Insulinas/metabolismo
8.
Eur J Med Chem ; 206: 112697, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814244

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide and targeted therapeutics exhibit limited success. Polo-like kinase 1 (PLK1), a Ser/Thr kinase, plays a pivotal role in cell-cycle regulation and is considered a promising target in HCC. Here, via structural optimization using both biochemical kinase assays and cellular antiproliferation assays, we discovered a potent and selective PLK1 kinase inhibitor, compound 31. Compound 31 exhibited biochemical activity with IC50 of < 0.508 nM against PLK1 and a KINOMEscan selectivity score (S(1)) of 0.02 at a concentration of 1 µM. Furthermore, 31 showed broad antiproliferative activity against a variety of cancer cell lines, with the lowest antiproliferative IC50 (11.1 nM) in the HCC cell line HepG2. A detailed mechanistic study of 31 revealed that inhibition of PLK1 by 31 induces mitotic arrest at the G2/M phase checkpoint, thus leading to cancer cell apoptosis. Moreover, 31 exhibited profound antitumor efficacy in a xenograft mouse model. Collectively, these results establish compound 31 as a good starting point for the development of PLK1 targeted therapeutics for HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diseño de Fármacos , Neoplasias Hepáticas/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tiofenos/química , Tiofenos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Ratones , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
9.
Eur J Med Chem ; 207: 112755, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882611

RESUMEN

The receptor tyrosine kinase rearranged during transfection (RET) plays pivotal roles in several cancers, including thyroid carcinoma and non-small cell lung cancer (NSCLC). Currently, there are several FDA-approved RET inhibitors, but their indication is limited to thyroid cancer, and none can overcome their gatekeeper mutants (V804L and V804M). Here, we report the discovery of 9x representing a new chemotype of potent and selective RET inhibitors, using a rational design strategy of type II kinase inhibitors. 9x exhibited both superior antiproliferative activities against NSCLC-related carcinogenic fusions KIF5B-RET and CCDC6-RET and gatekeeper mutant-transformed Ba/F3 cells, with the lowest GI50 of 9 nM, and substantial inhibitory activities against wild-type RET and RET mutant proteins, with the best IC50 of 4 nM. More importantly, 9x also showed nanomole potency against RET-positive NSCLC cells LC-2/ad, but not against a panel of RET-negative cancer cells, such as A549, H3122, A375 or parental Ba/F3 cells, demonstrating its selective 'on-target' effect. In mouse xenograft models, 9x repressed tumor growth driven by both wild type KIF5B-RET-Ba/F3 and gatekeeper mutant KIF5B-RET(V804M)-Ba/F3 cells in a dose-dependent manner. Together, these data establish that 9x provides a good starting point for the development of targeted therapeutics against RET-positive cancers, especially NSCLC.


Asunto(s)
Diseño de Fármacos , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Pirazoles/química , Pirazoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Proteínas Proto-Oncogénicas c-ret/genética
10.
Nanoscale ; 11(24): 11429-11436, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31183476

RESUMEN

Gold nanocatalysts with different sizes (nanoparticles and nanoclusters) show different catalytic performances for various selective hydrogenation reactions. The recent breakthrough in a controllable synthesis of atomically precise gold nanoclusters provides unprecedented opportunities for understanding the catalytic behavior at the atomic/molecular levels. Herein, we review the progress in catalytic hydrogenation over gold nanoparticles and atomically precise gold nanoclusters in the last five years. We also compare the results obtained from different reactions so that a better understanding of their catalytic behavior can be obtained. Finally, we provide some future perspectives on gold nanocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA