RESUMEN
CRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa. The AcrIF11-mediated ADP-ribosylation of the Csy complex results in complete loss of its double-stranded DNA (dsDNA) binding activity. Biochemical studies show that AcrIF11 requires, besides Cas8f, the Cas7.6f subunit for binding to and modifying the Csy complex. Our study not only reveals an unprecedented mechanism of type I CRISPR-Cas inhibition and the evolutionary arms race between phages and bacteria but also suggests an approach for designing highly potent regulatory tools in the future applications of type I CRISPR-Cas systems.
Asunto(s)
Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas/fisiología , Proteínas Virales/metabolismo , ADP-Ribosilación/fisiología , Proteínas Bacterianas/genética , Bacteriófagos/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Microscopía por Crioelectrón/métodos , ADN/metabolismo , Modelos Moleculares , ARN Bacteriano/metabolismo , Proteínas Virales/genéticaRESUMEN
Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis.
Asunto(s)
Empalme Alternativo , Carcinogénesis/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas de Unión al ARN/genética , Transactivadores/genética , Acetilcoenzima A/deficiencia , Acetilación , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Pronóstico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Transducción de Señal , Análisis de Supervivencia , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismoRESUMEN
Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear. In this study, we identified a novel mutation in CRYBB1 from a congenital cataract family, and demonstrated that this mutation led to an early termination of mRNA translation, resulting in a 49-residue C-terminally truncated CRYßB1 protein. We show this mutant is susceptible to proteolysis, which allowed us to determine a 1.2-Å resolution crystal structure of CRYßB1 without the entire C-terminal domain. In this crystal lattice, we observed that two N-terminal domain monomers form a dimer that structurally resembles the WT monomer, but with different surface characteristics. Biochemical analyses and cell-based data also suggested that this mutant is significantly more liable to aggregate and degrade compared to WT CRYßB1. Taken together, our results provide an insight into the mechanism regarding how a mutant crystalin contributes to the development of congenital cataract possibly through alteration of inter-protein interactions that result in protein aggregation.
Asunto(s)
Catarata , Cristalinas , Cristalino , Humanos , Catarata/metabolismo , Cristalinas/genética , Cristalino/metabolismo , Mutación , Agregado de ProteínasRESUMEN
Viral RNA-dependent RNA polymerases (RdRPs) play central roles in the genome replication and transcription processes of RNA viruses. RdRPs initiate RNA synthesis either in primer-dependent or de novo mechanism, with the latter often assisted by a 'priming element' (PE) within the RdRP thumb domain. However, RdRP PEs exhibit high-level structural diversity, making it difficult to reconcile their conserved function in de novo initiation. Here we determined a 3.1-Å crystal structure of the Flaviviridae classical swine fever virus (CSFV) RdRP with a relative complete PE. Structure-based mutagenesis in combination with enzymology data further highlights the importance of a glycine residue (G671) and the participation of residues 665-680 in RdRP initiation. When compared with other representative Flaviviridae RdRPs, CSFV RdRP PE is structurally distinct but consistent in terminal initiation preference. Taken together, our work suggests that a conformational change in CSFV RdRP PE is necessary to fulfill de novo initiation, and similar 'induced-fit' mechanisms may be commonly taken by PE-containing de novo viral RdRPs.
Asunto(s)
Virus de la Fiebre Porcina Clásica/enzimología , ARN Polimerasa Dependiente del ARN/química , Iniciación de la Transcripción Genética , Proteínas Virales/química , Cristalografía por Rayos X , Flaviviridae/enzimología , Modelos Moleculares , Mutación , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Panose is a type of functional sugar with diverse bioactivities. The enzymatic conversion bioprocess to produce high purity panose with high efficiency has become increasingly important. Here, a new neopullulanase (NPase), Amy117 from B. pseudofirmus 703, was identified and characterized. Amy117 presented the optimal activity at pH 7.0 and 30 °C, its activity is over 40% at 10 °C and over 80% at 20 °C, which is cold-active. The enzyme cleaved α-1, 4-glycosidic linkages of pullulan to generate panose as the only hydrolysis product, and degraded cyclodextrins (CDs) and starch to glucose and maltose, with an apparent preference for CDs. Furthermore, Amy117 can produce 72.7 mg/mL panose with a conversion yield of 91% (w/w) based on 80 mg/mL pullulan. The sequence and structure analysis showed that the low proportion of Arg, high proportion of Asn and Gln, and high α-helix levels in Amy117 may contribute to its cold-active properties. Root mean square deviation (RMSD) analysis also showed that Amy117 is more flexible than two mesophilic homologues. Hence, we discovered a new high-efficiency panose-producing NPase, which so far achieves the highest panose production and would be an ideal candidate in the food industry.
Asunto(s)
Ciclodextrinas , Glicósido Hidrolasas , Ciclodextrinas/metabolismo , Glucanos , Glicósido Hidrolasas/metabolismo , Especificidad por SustratoRESUMEN
As the ortholog of human SR protein kinase 1 in fission yeast Schizosaccharomyces pombe, Dsk1 specifically phosphorylates SR proteins (serine/arginine-rich proteins) and promotes splicing of nonconsensus introns. The SRPK (SR protein-specific kinase) family performs highly conserved functions in eukaryotic cells including cell proliferation, differentiation, development, and apoptosis. Although Dsk1 was originally identified as a mitotic regulator, its specific targets involved in cell cycle have yet been unexplored. In this study, using a phosphoproteomics approach, we examined differential protein phosphorylation between wild-type cells and dsk1-deletion mutants. We found reduced phosphorylation of 149 peptides corresponding to 133 proteins in the dsk1-null cells. These proteins are involved in various cellular processes, including cytoskeleton organization and signal transduction, and specifically enriched in multiple steps of cell cycle control. Further, targeted MS analyses and in vitro biochemical assays established Cdr2 protein kinase and kinesin motor Klp9 as novel substrates of Dsk1, which function in cell size control for mitotic entry and in chromosome segregation for mitotic exit, respectively. The phosphoprotein networks mediated by Dsk1 reveal, for the first time, the molecular links connecting Dsk1 to mitotic phase transition, sister-chromatid segregation, and cytokinesis, providing further evidence of Dsk1's diverse influence on cell cycle progression and regulation.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Mitosis , Fosfoproteínas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMEN
OBJECTIVES: Bacterial persisters are a small subpopulation of cells that are highly tolerant of antibiotics and contribute to chronic and recalcitrant infections. Global gene expression in Pseudomonas aeruginosa persister cells and genes contributing to persister formation remain largely unknown. The objective of this study was to examine the gene expression profiles of the persister cells and those that regained growth in fresh medium, as well as to identify novel genes related to persister formation. METHODS: P. aeruginosa persister cells and those that regrew in fresh medium were collected and subjected to RNA sequencing analysis. Genes up-regulated in the persister cells were overexpressed to evaluate their roles in persister formation. The functions of the persister-contributing genes were assessed with pulse-chase assay, affinity chromatography, fluorescence and electron microscopy, as well as a light-scattering assay. RESULTS: An operon containing PA2282-PA2287 was up-regulated in the persister cells and down-regulated in the regrowing cells. PA2285 and PA2287 play key roles in persister formation. PA2285 and PA2287 were found to bind to RpoC and FtsZ, which are involved in transcription and cell division, respectively. Pulse-chase assays demonstrated inhibitory effects of PA2285 and PA2287 on the overall transcription. Meanwhile, light-scattering and microscopy assays demonstrated that PA2285 and PA2287 interfere with cell division by inhibiting FtsZ aggregation. PA2285 and PA2287 are conserved in pseudomonads and their homologous genes in Pseudomonas putida contribute to persister formation. CONCLUSIONS: PA2285 and PA2287 are novel bifunctional proteins that contribute to persister formation in P. aeruginosa.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/genética , Operón/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , División Celular/genética , Ciprofloxacina/farmacología , Perfilación de la Expresión Génica , Familia de Multigenes , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiologíaRESUMEN
BACKGROUND: At present, a large number of chronic obstructive pulmonary disease (COPD) patients are undiagnosed in China. Thus, this study aimed to develop a simple prediction model as a screening tool to identify patients at risk for COPD. METHODS: The study was based on the data of 22,943 subjects aged 30 to 79 years and enrolled in the second resurvey of China Kadoorie Biobank during 2012 and 2013 in China. We stepwisely selected the predictors using logistic regression model. Then we tested the model validity through P-P graph, area under the receiver operating characteristic curve (AUROC), ten-fold cross validation and an external validation in a sample of 3492 individuals from the Enjoying Breathing Program in China. RESULTS: The final prediction model involved 14 independent variables, including age, sex, location (urban/rural), region, educational background, smoking status, smoking amount (pack-years), years of exposure to air pollution by cooking fuel, family history of COPD, history of tuberculosis, body mass index, shortness of breath, sputum and wheeze. The model showed an area under curve (AUC) of 0.72 (95% confidence interval [CI]: 0.72-0.73) for detecting undiagnosed COPD patients, with the cutoff of predicted probability of COPD=0.22, presenting a sensitivity of 70.13% and a specificity of 62.25%. The AUROC value for screening undiagnosed patients with clinically significant COPD was 0.68 (95% CI: 0.66-0.69). Moreover, the ten-fold cross validation reported an AUC of 0.72 (95% CI: 0.71-0.73), and the external validation presented an AUC of 0.69 (95% CI: 0.68-0.71). CONCLUSION: This prediction model can serve as a first-stage screening tool for undiagnosed COPD patients in primary care settings.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Factores de Riesgo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Fumar/efectos adversos , China , Atención Primaria de Salud , EspirometríaRESUMEN
Free energy calculation of small molecules or ion species in aqueous solvent is one of the most important problems in electrochemistry study. Although there are many previous approaches to calculate such free energies, they are based on ab initio methods and suffer from various limitations and approximations. In the current work, we developed a hybrid approach based on ab initio molecular dynamics (AIMD) simulations to calculate the ion solvation energy. In this approach, a small water cluster surrounding the central ion is used, and implicit solvent model is applied outside the water cluster. A dynamic potential well is used during AIMD to keep the water cluster together. Quasi-harmonic approximation is used to calculate the entropy contribution, while the total energy average is used to calculate the enthalpy term. The obtained solvation voltages of the bulk metal agree with experiments within 0.3 eV, and the simulation results for the solvation energies of gaseous ions are close to the experimental observations. Besides the free energies, radial pair distribution functions and coordination numbers of hydrated cations are also obtained. The remaining challenges of this method are also discussed.
RESUMEN
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
RESUMEN
Essential to bacterial pathogenesis, Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved the capacity to quickly sense and adapt to specific intracellular environment within distinct host cells. Here we examined S. Typhimurium proteomic remodeling within macrophages, allowing direct comparison with our previous studies in epithelial cells. In addition to many shared features, our data revealed proteomic signatures highly specific to one type of host cells. Notably, intracellular S. Typhimurium differentially regulates the two type III secretion systems (T3SSs) far more quickly in macrophages than in epithelial cells; bacterial flagellar and chemotaxis systems degenerate more quickly in macrophages than in HeLa cells as well. Importantly, our comparative analysis uncovered high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells. Targeted metabolomic measurements revealed markedly lower histidine levels within macrophages. Intriguingly, further functional studies established that histidine biosynthesis that is defective (due to a hisG mutation) renders the bacterium (strain SL1344) hypersensitive to intracellular shortage of this amino acid. Indeed, another S. Typhimurium strain, namely, strain 14028s, with a fully functional biosynthetic pathway exhibited only minor induction of the his operon within infected macrophages. Our work thus provided novel insights into S. Typhimurium adaptation mechanisms within distinct host cells and also provided an elegant paradigm where proteomic profiling of intracellular pathogens is utilized to discriminate specific host environments (e.g., on the basis of nutrient availability). IMPORTANCE Salmonella Typhimurium is one of the leading causes of foodborne bacterial infection. Nevertheless, how Salmonella adapts to distinct types of host cells during infection remains poorly understood. By contrasting intracellular Salmonella proteomes from both infected macrophages and epithelial cells, we found striking proteomic signatures specific to particular types of host cells. Notably, Salmonella proteomic remodeling exhibited quicker kinetics in macrophages than in epithelial cells with respect to bacterial virulence and flagellar and chemotaxis systems. Furthermore, we unveiled high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells, which is attributable to differing intracellular levels of this amino acid. Intriguingly, we found that a defective hisG gene renders a Salmonella strain hypersensitive to histidine shortage in macrophages. Overall, our work reveals specific Salmonella adaptation mechanisms in distinct host cells, which should aid in the development of novel anti-infection strategies.
RESUMEN
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10-100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.