Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 41(30): 6449-6467, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34099512

RESUMEN

In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.


Asunto(s)
Línea Celular , Neuronas/citología , Bulbo Olfatorio/citología , Percepción Olfatoria/fisiología , Animales , Femenino , Integrasas , Masculino , Ratones , Ratones Transgénicos , Vías Olfatorias/citología
2.
Front Neurosci ; 14: 594818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584175

RESUMEN

RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.

3.
Front Neuroanat ; 13: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906254

RESUMEN

Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 loxP/loxP mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV(1/2)-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.

4.
PLoS One ; 10(4): e0122504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25849482

RESUMEN

Stressful life events are causally linked with alcohol use disorders (AUDs), providing support for a hypothesis that alcohol consumption is aimed at stress reduction. We have previously shown that expression of relaxin-3 mRNA in rat brain correlates with alcohol intake and that central antagonism of relaxin-3 receptors (RXFP3) prevents stress-induced reinstatement of alcohol-seeking. Therefore the objectives of these studies were to investigate the impact of Rxfp3 gene deletion in C57BL/6J mice on baseline and stress-related alcohol consumption. Male wild-type (WT) and Rxfp3 knockout (KO) (C57/B6JRXFP3TM1/DGen) littermate mice were tested for baseline saccharin and alcohol consumption and preference over water in a continuous access two-bottle free-choice paradigm. Another cohort of mice was subjected to repeated restraint followed by swim stress to examine stress-related alcohol preference. Hepatic alcohol and aldehyde dehydrogenase activity was assessed in mice following chronic alcohol intake and in naive controls. WT and Rxfp3 KO mice had similar baseline saccharin and alcohol preference, and hepatic alcohol processing. However, Rxfp3 KO mice displayed a stress-induced reduction in alcohol preference that was not observed in WT littermates. Notably, this phenotype, once established, persisted for at least six weeks after cessation of stress exposure. These findings suggest that in mice, relaxin-3/RXFP3 signalling is involved in maintaining high alcohol preference during and after stress, but does not appear to strongly regulate the primary reinforcing effects of alcohol.


Asunto(s)
Conducta Alimentaria/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estrés Fisiológico , Alcohol Deshidrogenasa/metabolismo , Consumo de Bebidas Alcohólicas , Aldehído Deshidrogenasa/metabolismo , Animales , Etanol/metabolismo , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Sacarina , Transducción de Señal
5.
Behav Brain Res ; 292: 125-32, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26057358

RESUMEN

Anxiety disorders are among the most prevalent neuropsychiatric conditions, but their precise aetiology and underlying pathophysiological processes remain poorly understood. In light of putative anatomical and functional interactions of the relaxin-3/RXFP3 system with anxiety-related neural circuits, we assessed the ability of central administration of the RXFP3 agonist, RXFP3-A2, to alter anxiety-like behaviours in adult C57BL/6J mice. We assessed how RXFP3-A2 altered performance in tests measuring rodent anxiety-like behaviour (large open field (LOF), elevated plus maze (EPM), light/dark (L/D) box, social interaction). We examined effects of RXFP3-A2 on low 'basal' anxiety, and on elevated anxiety induced by the anxiogenic benzodiazepine, FG-7142; and explored endogenous relaxin-3/RXFP3 signalling modulation by testing effects of an RXFP3 antagonist, R3(B1-22)R, on these behaviours. Intracerebroventricular (icv) injection of RXFP3-A2 (1 nmol, 15 min pre-test) did not alter anxiety-like behaviour under 'basal' conditions in the LOF, EPM or L/D box, but reduced elevated indices of FG-7142-induced (30 mg/kg, ip) anxiety-like behaviour in the L/D box and a single-chamber social interaction test. Furthermore, R3(B1-22)R (4 nmol, icv, 15 min pre-test) increased anxiety-like behaviour in the EPM (reflected by reduced entries into the open arms), but not consistently in the LOF, L/D box or social interaction tests, suggesting endogenous signaling only weakly participates in regulating 'basal' anxiety-like behaviour, in line with previous studies of relaxin-3 and RXFP3 gene knockout mice. Overall, these data suggest exogenous RXFP3 agonists can reduce elevated (FG-7142-induced) levels of anxiety in mice; data important for gauging how conserved such effects are, with a view to modelling human pathophysiology and the likely therapeutic potential of RXFP3-targeted drugs.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Carbolinas/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Relaxina/metabolismo
6.
Front Pharmacol ; 5: 46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24711793

RESUMEN

Animal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.

7.
Behav Brain Res ; 268: 117-26, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24681162

RESUMEN

Behavioural arousal in mammals is regulated by various interacting central monoamine- and peptide-neurotransmitter/receptor systems, which function to maintain awake, alert and active states required for performance of goal-directed activities essential for survival, including food seeking. Existing anatomical and functional evidence suggests the highly-conserved neuropeptide, relaxin-3, which signals via its cognate Gi/o-protein coupled receptor, RXFP3, contributes to behavioural arousal and feeding behaviour in rodents. In studies to investigate this possibility further, adult male C57BL/6J mice were treated with the selective RXFP3 antagonist peptides, R3(B1-22)R/I5(A) and R3(B1-22)R, and motivated food seeking and consumption was assessed as a reflective output of behavioural arousal. Compared to vehicle treatment, intracerebroventricular (icv) injection of RXFP3 antagonists reduced: (i) food anticipatory activity before meal time during food restriction; (ii) consumption of highly palatable food; (iii) consumption of regular chow during the initial dark phase, and; (iv) consumption of regular chow after mild (∼4-h) food deprivation. Effects were not due to sedation and appeared to be specifically mediated via antagonism of relaxin-3/RXFP3 signalling, as RXFP3 antagonist treatment did not alter locomotor activity in wild-type mice or reduce palatable food intake in relaxin-3 deficient (knock-out) mice. Notably, in contrast to similar studies in the rat, icv injection of RXFP3 agonists and infusion into the paraventricular hypothalamic nucleus did not increase food consumption in mice, suggesting species differences in relaxin-3/RXFP3-related signalling networks. Together, our data provide evidence that endogenous relaxin-3/RXFP3 signalling promotes motivated food seeking and consumption, and in light of the established biological and translational importance of other arousal systems, relaxin-3/RXFP3 networks warrant further experimental investigation.


Asunto(s)
Conducta Apetitiva/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Péptidos/administración & dosificación , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Anticipación Psicológica/efectos de los fármacos , Anticipación Psicológica/fisiología , Conducta Apetitiva/fisiología , Oscuridad , Dieta , Ingestión de Alimentos/fisiología , Privación de Alimentos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA