Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(2): 624-655, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38109059

RESUMEN

Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.

2.
Anal Chem ; 96(17): 6588-6598, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619494

RESUMEN

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Aprendizaje Automático , Listeria monocytogenes/aislamiento & purificación , Cronobacter sakazakii/aislamiento & purificación , Dióxido de Silicio/química , Sistemas de Atención de Punto , Animales , Leche/microbiología , Leche/química , Técnicas Biosensibles , Redes Neurales de la Computación
3.
Anal Chem ; 96(26): 10714-10723, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913030

RESUMEN

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.


Asunto(s)
Aleaciones , Estriol , Oro , Nanopartículas del Metal , Inmunoensayo/métodos , Nanopartículas del Metal/química , Oro/química , Estriol/análisis , Aleaciones/química , Animales , Colorimetría , Límite de Detección , Taninos/química , Taninos/análisis
4.
Anal Chem ; 96(12): 5046-5055, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488055

RESUMEN

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Asunto(s)
Clenbuterol , Nanopartículas del Metal , Oro , Inmunoensayo , Fenómenos Químicos , Límite de Detección
5.
Small ; : e2400903, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616776

RESUMEN

Rechargeable magnesium batteries (RMBs) are a promising energy-storage technology with low cost and high reliability, while the lack of high-performance cathodes is impeding the development. Herein, a series of amorphous cobalt polyselenides (CoSex, x>2) is synthesized with the assistance of organic amino-terminal hyperbranched polymer (AHP) additive and investigated as cathodes for RMBs. The coordination of cobalt cations with the amino groups of AHP leads to the formation of amorphous CoSex rather than crystalline CoSe2. The amorphous structure is favorable for magnesium-storage reaction kinetics, and the polyselenide anions provide extra capacities besides the redox of cobalt cations. Moreover, the organic AHP molecules retained in CoSex-AHP provide an elastic matrix to accommodate the volume change of conversion reaction. With a moderate x value (2.73) and appropriate AHP content (11.58%), CoSe2.7-AHP achieves a balance between capacity and cycling stability. Amorphous CoSe2.7-AHP provides high capacities of 246.6 and 94 mAh g‒1, respectively, at 50 and 2000 A g‒1, as well as a capacity retention rate of 68.5% after 300 cycles. The mechanism study demonstrates CoSex-AHP undergoes reversible redox of Co2+/3+↔Co0 and Sen 2‒↔Se2‒. The present study demonstrates amorphous polyselenides with cationic-anionic redox activities is as a feasible strategy to construct high-capacity cathode materials for RMBs.

6.
Anal Chem ; 95(46): 16958-16966, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37942854

RESUMEN

Developing signal tracers (STAs) with large size, multifunctionality, and high retention bioaffinity is believed to be a potential solution for achieving high-performance immunochromatographic assays (ICAs). However, the size limitations of STAs on strips are always a challenge because of the serious steric hindrance. Here, based on metal-quinone coordination and further metal etching, hollow micron-tubular STAs formed by natural alizarin and Fe3+ ions (named ALIFe) are produced to break through size limitations, provide more active sites, and achieve three-mode ICAs (ALIFe STAs-ICAs). Thanks to the special tubular morphology, ALIFe can successfully pass through the strip and provide an ideal signal intensity within 7 min at low mAb and probe dosages to achieve stable ICA analysis. Importantly, ALIFe shows excellent antibody enrichment and bioaffinity retention capability. With a proof-of-concept for streptomycin, the ALIFe STAs-ICAs showed the limit of detection (LOD) at 0.39 ng mL-1 for colorimetric mode, 0.32 ng mL-1 for catalytic mode, and 0.016 ng mL-1 for photothermal mode with total recoveries ranging from 80.46 to 121.59% in mike and honey samples. We anticipate that our study will help expand the ideas for the design of high-performance STAs with large size and broaden the practical application of ICA.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Cromatografía de Afinidad/métodos , Límite de Detección , Nanopartículas del Metal/química
7.
Anal Chem ; 95(8): 4095-4103, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36780295

RESUMEN

It is of great importance to overcome potential incompatibility problems between dyestuffs and antibodies (mAbs) for extensive commercial application of a dyestuff-chemistry-based ultrafast colorimetric lateral flow immunoassay (cLFIA). Herein, inspired by traditional staining technologies, a basic dyestuff gallocyanine (GC)-assisted biogenic "potential scalpel"-based cLFIA (GC-ABPS-based cLFIA) by employing clenbuterol (CLE) as proof-of-concept was proposed to solve a high degree of incompatibility between the same potential dyestuffs and mAbs. Goat antimouse immunoglobulin (Ab2) could serve as the "potential scalpel" to form the positive potential value biomolecular network self-assemblers (BNSA) with anti-CLE mAbs (AbCLE) by noncovalent force. The cLFIA completed the entire detection process from de novo to detection results within 30 min thanks to the easy availability and ideal marking efficiency (≤1 min, saving 0.4-10 h) of GC. Encouragingly, the proposed ultrafast GC-ABPS-based cLFIA has also exhibited high sensitivity (0.411 ng mL-1) and low cost (300 times) compared with other cLFIAs. Also, the feasibility of the proposed cLFIA was demonstrated by detecting CLE in beef, pork ham, and skim milk. Finally, the proposed GC-ABPS-based cLFIA has broadened the application range of dyestuffs and provided an effective reference strategy for the application of dyestuffs in food safety monitoring.


Asunto(s)
Clenbuterol , Animales , Bovinos , Inmunoensayo/métodos , Inocuidad de los Alimentos , Anticuerpos Monoclonales
8.
Anal Chem ; 95(7): 3769-3778, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36757057

RESUMEN

Expanding sensing modes and improving catalytic performance of nanozyme-based analytical chemistry are beneficial to realizing the desired biosensing of analytes. Herein, Schiff-base chemistry coupled with a novel catechol oxidase-like nanozyme (CHzyme) is designed and constructed, exhibiting two main advantages, including (1) improving catalytic performance by nearly 2-fold compared with only the oxidase-like role of CHzyme; (2) increasing the designability of the output signal by signal transduction of cascade reaction. Thereafter, the substrate sensing modes based on a cascade reaction between the CHzyme-catalyzed reaction and Schiff-base chemistry are proposed and comprehensively studied, containing catalytic substrate sensing mode, competitive substrate sensing mode, and generated substrate sensing mode, expecting to be employed in environmental monitoring, food analyses, and clinical diagnoses, respectively. More meaningfully, the generated substrate sensing mode is successfully applied to construct a cascade reaction coupling ratiometric fluorescent immunoassay for the detection of clenbuterol, increasing 15-fold in detection sensitivity compared with the traditional enzyme-linked immunosorbent assay. It is expected that the expanded universal substrate sensing modes and the Schiff-base chemistry-enhanced nanozyme can enlighten the exploration of innovative biosensors.


Asunto(s)
Técnicas Biosensibles , Catecol Oxidasa , Ensayo de Inmunoadsorción Enzimática
9.
Small ; 19(32): e2301189, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37069774

RESUMEN

In situ electrochemical activation brings unexpected electrochemical performance improvements to electrode materials, while the mechanism behind is still needed to study deeply. Herein, an in situ electrochemically approach is developed for the activation of heterointerface MnOx /Co3 O4 by inducing Mn-defect, wherein the Mn defects are formed through a charge process that converts the MnOx with poor electrochemical activities toward Zn2+ into high electrochemically active cathode for aqueous zinc-ion batteries (ZIBs). Guided by the coupling engineering strategy, the heterointerface cathode exhibits an intercalation/conversion dual-mechanism without structural collapse during storage/release of Zn2+ . The heterointerfaces between different phases can generate built-in electric fields, reducing the energy barrier for ion migration and facilitating electron/ion diffusion. As a consequence, the dual-mechanism MnOx /Co3 O4 shows an outstanding fast charging performance and maintains a capacity of 401.03 mAh g-1 at 0.1 A g-1 . More importantly, a ZIB based on MnOx /Co3 O4 delivered an energy density of 166.09 Wh kg-1 at an ultrahigh power density of 694.64 W kg-1 , which outperforms those of fast charging supercapacitors. This work provides insights for using defect chemistry to introduce novel properties in active materials for highly for high-performance aqueous ZIBs.

10.
Small ; 19(14): e2206701, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36599690

RESUMEN

Herein, for the first time, a pre-intercalated non-metal ion (NH4 + ) with rich oxygen vacancies stabilized tunnel WO3 is proposed as a new intercalation anode to construct Zn-metal-free rocking-chair ZIBs. With the ethylene glycol additive in the aqueous electrolyte, the Zn2+ solvation structure can be regulated and the side reaction of hydrogen evolution can also be suppressed. Owing to the integrated synergetic modification, a high-rate and ultra-stable aqueous Zn-(NH4 )x WO3 battery can be constructed, which exhibits an improved specific capacity (153 mAh g-1 at 0.1 A g-1 ), excellent rate performance (when the current density increases to 3 A g-1 , the specific capacitance is still 86 mAh g-1 ), and a high cycle stability with 100% capacity retention after 2,200 cycles under 5 A g-1 . Ex situ X-ray diffraction and XPS reveal the reversible insertion/extraction of Zn2+ in (NH4 )x WO3 . The assembled (NH4 )x WO3 //MnO2 rocking-chair ZIBs delivers excellent capacity of 82 mAh g-1 at 0.1 A g-1 , impressive cyclic stability. Additionally, the flexible (NH4 )x WO3 //MnO2 ZIBs can power the electrochromic device-based PANI/WO3 with high color contrast and fast response time. This study provides new insight for developing high-performance rechargeable aqueous ZIBs.

11.
Small ; 19(43): e2301598, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381671

RESUMEN

Engineered collaborative size regulation and shape engineering of multi-functional nanomaterials (NPs) offer extraordinary opportunities for improving the analysis performance. It is anticipated to address the difficulty in distinguishing color changes caused by subtle variations in target concentrations, thereby facilitating the highly sensitive analysis of lateral flow immunoassays (LFIAs). Herein, tremella-like gold-manganese oxide (Au-MnOx ) nanoparticles with precise MnCl2 regulation are synthesized as immuno signal tracers via a facile one-step redox reaction in alkaline condition at ambient temperature. Avail of the tunable elemental composition and anisotropy in morphology, black-colored tremella-like Au-MnOx exhibits superb colorimetric signal brightness, enhanced antibody coupling efficiency, marvelous photothermal performance, and unrestricted immunological recognition affinity, all of which facilitate highly sensitive multi-signal transduction patterns. In conjunction with the handheld thermal reader device, a bimodal-type LFIA that combines size-regulation- and shape-engineering-mediated colorimetric-photothermal dual-response assay (coined as the SSCPD assay) with a limit of detection of 0.012 ng mL-1 for ractopamine (RAC) monitoring is achieved by integrating Au-MnOx with the competitive-type immunoreaction. This work illustrates the effectiveness of this strategy for establishing high-performance sensing, and the SSCPD assay may be extended to a wide spectrum of future point-of-care (POC) diagnostic applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro , Inmunoensayo , Anticuerpos , Colorimetría , Límite de Detección
12.
Environ Res ; 239(Pt 1): 117251, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37783323

RESUMEN

To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.


Asunto(s)
Desnitrificación , Ibuprofeno , Ibuprofeno/toxicidad , Reactores Biológicos , Nitratos , Azufre/química , Nitrógeno , Bacterias/metabolismo
13.
J Environ Manage ; 332: 117427, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738723

RESUMEN

To remove residual nitrate from anammox process and achieve efficient nitrogen removal, a two-stage system (TAS) with the two individual reactors and a one-stage system (OAS) with the spatial functional areas in one reactor were established via anammox coupling sulfur autotrophic denitrification. The total nitrogen removal efficiency (TNRE) of OAS system (97.85 ± 1.92%) was higher than that of TAS system (93.63 ± 1.87%) under the influent NH4+-N and NO2--N of 227 and 300 mg/L. Meanwhile, the responses of microbial metabolism to high nitrogen load were investigated in term of microbial metabolites, electron transfer and metabolic activity. Microbial metabolites characteristics demonstrated that the OAS system secreted more EPS with lower protein (PN)/polysaccharide (PS) ratio than that in the TAS system, which was beneficial to protect bacteria from high nitrogen load. Electrochemical analysis suggested that the secretion of electron conductive substance (such as PN, PS) and redox active substances (such as flavin mononucleotide, the binding of flavins and cytochrome c on the outer membrane) were increased in the OAS system, which promoted the electron transfer efficiency. Moreover, the electron transport system activity (ETSA) values and ATP contents in OAS system were higher than that in the TAS system, which indicated that metabolic activity was improved in OAS system under the stimulation of high nitrogen load. Additionally, the bacterial community analysis indicated that the functional bacteria of Candidatus_Kuenenia and Armatimonadetes_gp5 had higher abundance in the OAS system than that in the TAS system, which was beneficial to realize the stable nitrogen removal performance. Overall, the responses mechanism of the OAS system was established to explain the resistant to high nitrogen load.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/análisis , Oxidación Anaeróbica del Amoníaco , Bacterias/metabolismo , Oxidación-Reducción , Azufre , Reactores Biológicos
14.
Angew Chem Int Ed Engl ; 62(42): e202310832, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37646238

RESUMEN

The application of hydrogels often suffers from their inherent limitation of poor mechanical properties. Here, a carboxyl-functionalized and acryloyl-terminated hyperbranched polycaprolactone (PCL) was synthesized and used as a macro-cross-linker to fabricate a super strong and ultra-tough ionic hydrogel. The terminal acryloyl groups of hyperbranched PCL are chemically incorporated into the network to form covalent cross-links, which contribute to robust networks. Meanwhile, the hydrophobic domains formed by the spontaneous aggregation of PCL chains and coordination bonds between Fe3+ and COO- groups serve as dynamic non-covalent cross-links, which enhance the energy dissipation ability. Especially, the influence of the hyperbranched topological structure of PCL on hydrogel properties has been well investigated, exhibiting superior strengthening and toughening effects compared to the linear one. Moreover, the hyperbranched PCL cross-linker also endowed the ionic hydrogel with higher sensitivity than the linear one when used as a strain sensor. As a result, this well-designed ionic hydrogel possesses high mechanical strength, superior toughness, and well ionic conductivity, exhibiting potential applications in the field of flexible strain sensors.

15.
Anal Chem ; 94(24): 8693-8703, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35679510

RESUMEN

The color-enzyme lateral flow immunoassay (LFIA) has attracted widespread attention to expand the detection range and improve sensitivity via amplifying the color signal after catalyzing the substrate. As a kind of layered transition-metal dichalcogenide (TMD), the vanadium disulfide nanosheet (VS2NS) possesses superior peroxidase-like catalytic activity. Here, a VS2NS was applied as an enzyme label in the LFIA to detect 17ß-estradiol (E2). Compared to natural horseradish peroxidase, the VS2NS expresses a more prominent enzyme catalytic performance, stability, and adsorption ability. Under optimal conditions, the calculated limit of detection (cLOD) of the VS2NS-based LFIA is 0.065 ng mL-1 for E2, which is sixfold lower than that of the optimized colloidal nanoparticle-based LFIA (cLOD = 0.406 ng mL-1). Besides, the detection linear range of the VS2NS-based LFIA can be widened by 1.5 times after the catalytic reaction. Moreover, the VS2NS-based LFIA exhibits excellent practicability in real sample detection. Simultaneously, this study helps open up the application of the VS2NS in the trace analysis of LFIAs, which can broaden TMDs' scope of application and better show their properties of color enzymes.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Inmunoensayo , Límite de Detección , Nanopartículas del Metal/química , Compuestos de Vanadio
16.
Anal Chem ; 94(3): 1585-1593, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35021619

RESUMEN

Multiplex lateral flow immunoassay (mLFIA) has attracted great attention due to the increasing need for rapid detection of multiple analytes. However, it has a number of disadvantages with regard to accuracy and interference because of difficulties in simplifying the process of preparing nanomaterial-based probes. In this work, inspired by protein self-assembly, for the first time, a facile natural antibody network (NAN)-based mLFIA for multiple chloramphenicol (CAP) and streptomycin (STR) determination was designed. The NAN structure was constructed by introducing a second antibody (Ab2) as a scaffold to noncovalently combine with various monoclonal antibodies (mAbs), thus permitting each mAb to act as an independent functional unit to maintain bioactivity. Furthermore, the NAN was colored by simple one-step staining using coomassie brilliant blue R-250 (CBBR) to form a chromogenic probe, eliminating the need for complex nanomaterials to improve reproducibility and precision. Under optimal conditions, a satisfactory detection performance (the visual limit of detection (v-LOD) of 3 ng mL-1 for CAP and 20 ng mL-1 for STR) was obtained for whole milk analysis, which met the basic requirement of detection and had good specificity, reproducibility (relative standard deviation (RSD) < 15%), and robustness. In addition, the precision of the detection results was improved usefully since the test procedure was simplified. Overall, the developed system enables fast, simple, and reliable point-of-care assays of multiple analytes.


Asunto(s)
Leche , Pruebas en el Punto de Atención , Animales , Inmunoensayo/métodos , Límite de Detección , Leche/química , Reproducibilidad de los Resultados
17.
Small ; 18(15): e2106716, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218141

RESUMEN

Herein, a type of hypervalent iodine compound-iodosobenzene (PhIO)-is proposed to regulate the LiPSs electrochemistry and enhance the performance of Li-S battery. PhIO owns the practical advantages of low-cost, commercial availability, environmental friendliness and chemical stability. The lone pair electrons of oxygen atoms in PhIO play a critical role in forming a strong Lewis acid-base interaction with terminal Li in LiPSs. Moreover, the commercial PhIO can be easily converted to nanoparticles (≈20 nm) and uniformly loaded on a carbon nanotube (CNT) scaffold, ensuring sufficient chemisorption for LiPSs. The integrated functional PhIO@CNT interlayer affords a LiPSs-concentrated shield that not only strongly obstructs the LiPSs penetration but also significantly enhances the electrolyte wettability and Li+ conduction. The PhIO@CNT interlayer also serves as a "vice current collector" to accommodate various LiPSs and render smooth LiPSs transformation, which suppresses insulating Li2 S2 /Li2 S layer formation and facilitates Li+ diffusion. The Li-S battery based on PhIO@CNT interlayer (6 wt% PhIO) exhibits stable cycling over 1000 cycles (0.033% capacity decay per cycle) and excellent rate performance (686.6 mAh g-1 at 3 C). This work demonstrates the great potential of PhIO in regulating LiPSs and provides a new avenue towards the low-cost and sustainable application of Li-S batteries.

18.
Small ; 18(45): e2204859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161770

RESUMEN

Stimulated surface-enhanced Raman scattering (SERS) in combination with engineered nano-tracer offers extraordinary potential in lateral flow immunoassays (LFIAs). Nonetheless, the investigation execution of SERS-LFIA is often compromised by the intricacy and overlap of the Raman fingerprint spectrum as well as the affinity-interference of nano-tracer to antibody. To circumvent these critical issues, an engineered core-shell multifunctional nano-tracer (named APNPs) with precise control of the size of nano-core (AuNPs) and coating of the nano-shell (Prussian blue nanomaterials) is prepared for SERS-LFIA via a modified enlarging particle size and coating modification strategy. Importantly, this nano-tracer exhibits enhanced coupling efficiency, highly retained affinity, reinforced colloid stability, and unique SERS signal (2156 cm-1 ) in the silent region (1800-2800 cm-1 ) with high signal-to-background ratio simultaneously, all of which are beneficial to the enhancement of the analysis performance. With a proof-of-concept demonstration for detection of ractopamine (RAC), a dual-pattern LFIA that synergizes both the enlarged particle size and coating modification supported colorimetric/biological silence Raman dual-response (coined as the ECCRD assay) is demonstrated by integrating APNPs with the competitive-type immunoreaction. This research may contribute to the rational design of multifunctional nano-tracer, and the ECCRD assay can be expanded for a wide spectrum of applications in environmental monitoring and biomedical diagnosis.


Asunto(s)
Oro , Nanopartículas del Metal , Plata , Espectrometría Raman , Inmunoensayo
19.
Inorg Chem ; 61(48): 19567-19576, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36398894

RESUMEN

The design and synthesis of hollow and porous nanostructured electrode materials is an effective strategy to improve the electrochemical performance of lithium-ion batteries and the hydrogen evolution reaction (HER). Herein, we synthesize hollow and porous Co@Co3O4 nanoparticles embedded in N-doped CNTs (N-CNTs) with rich surface defects through a two-step calcination strategy. The formation mechanism is explored. The influence of oxygen vacancies regulated by the nanoscale Kirkendall effect on the electrochemical performance of the electrode is elucidated. The Co@Co3O4@N-CNTs exhibit remarkable activity for catalyzing the HER with a low onset overpotential of 296 mV (a low Tafel slope of 116.2 mV dec-1), much better than Co3O4@N-CNTs (315 mV for overpotential and 124.2 mV dec-1 for Tafel slope). Significantly, the Co@Co3O4@N-CNTs deliver a high discharge capacity of 990 mA h g-1 after 600 cycles at 0.1 A g-1. Our nanostructure strategy can provide new insights into the strategy for high-rate and highly stable energy storage systems.

20.
Compr Rev Food Sci Food Saf ; 21(6): 5077-5108, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36200572

RESUMEN

With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.


Asunto(s)
Microbiología de Alimentos , Inocuidad de los Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA