Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stroke ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114924

RESUMEN

BACKGROUND: Cerebral small vessel disease (CSVD) is a group of neurological disorders that affect the small blood vessels within the brain, for which no effective treatments are currently available. We conducted a Mendelian randomization (MR) study to identify candidate therapeutic genes for CSVD. METHODS: We retrieved genome-wide association study data from 6 recently conducted, extensive investigations focusing on CSVD magnetic resonance imaging markers and performed a 2-sample MR analysis to assess the potential causal effects of gene expression and protein level within druggable genes on CSVD in blood and brain tissues. Colocalization analyses and repeat studies were undertaken to verify the relationship. Additionally, mediation analysis was conducted to explore the potential mechanisms involving druggable genes and known risk factors for CSVD. Finally, phenome-wide MR analyses were applied to evaluate the potential adverse effects related to the identified druggable genes for CSVD treatment. RESULTS: Overall, 5 druggable genes consistently showed associations with CSVD in MR analyses across both the discovery and validation cohorts. Notably, the ALDH2 and KLHL24 genes were identified as associated with CSVD in both blood and brain tissues, whereas the genes ADRB1, BTN3A2, and EFEMP1 were exclusively detected in brain tissue. Moreover, mediation analysis elucidated the proportion of the total effects mediated by CSVD risk factors through candidate druggable genes, which ranged from 5.5% to 18.5%, and offered potential explanations for the observed results. A comprehensive phenome-wide MR analysis further emphasized both the therapeutic benefits and potential side effects of targeting these candidate druggable genes. CONCLUSIONS: This study provides genetic evidence supporting the potential therapeutic benefits of targeting druggable genes for treating CSVD, which will be useful for prioritizing CSVD drug development.

2.
Poult Sci ; 103(7): 103818, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733755

RESUMEN

Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.


Asunto(s)
Patos , Hígado Graso , Factor 1 de Crecimiento de Fibroblastos , Enfermedades de las Aves de Corral , Animales , Hígado Graso/veterinaria , Hígado Graso/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/genética , Enfermedades de las Aves de Corral/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Hígado/metabolismo , Hígado/efectos de los fármacos
3.
J Am Heart Assoc ; 13(4): e032668, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38348813

RESUMEN

BACKGROUND: It is uncertain whether rare NOTCH3 variants are associated with stroke and dementia in the general population and whether they lead to alterations in cognitive function. This study aims to determine the associations of rare NOTCH3 variants with prevalent and incident stroke and dementia, as well as cognitive function changes. METHODS AND RESULTS: In the prospective community-based Shunyi Study, a total of 1007 participants were included in the baseline analysis. For the follow-up analysis, 1007 participants were included in the stroke analysis, and 870 participants in the dementia analysis. All participants underwent baseline brain magnetic resonance imaging, carotid ultrasound, and whole exome sequencing. Rare NOTCH3 variants were defined as variants with minor allele frequency <1%. A total of 137 rare NOTCH3 carriers were enrolled in the baseline study. At baseline, rare NOTCH3 variant carriers had higher rates of stroke (8.8% versus 5.6%) and dementia (2.9% versus 0.8%) compared with noncarriers. After adjustment for associated risk factors, the epidermal growth factor-like repeats (EGFr)-involving rare NOTCH3 variants were associated with a higher risk of prevalent stroke (odds ratio [OR], 2.697 [95% CI, 1.266-5.745]; P=0.040) and dementia (OR, 8.498 [95% CI, 1.727-41.812]; P=0.032). After 5 years of follow-up, we did not find that the rare NOTCH3 variants increased the risk of incident stroke and dementia. There was no statistical difference in the change in longitudinal cognitive scale scores. CONCLUSIONS: Rare NOTCH3 EGFr-involving variants are genetic risk factors for stroke and dementia in the general Chinese population.


Asunto(s)
Demencia , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Encéfalo/patología , Imagen por Resonancia Magnética , Demencia/epidemiología , Demencia/genética , Receptores ErbB , Receptor Notch3/genética
4.
Braz. j. med. biol. res ; 53(1): e9144, Jan. 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1055480

RESUMEN

Wound scarring remains a major challenge for plastic surgeons. Transforming growth factor (TGF)-β plays a key role in the process of scar formation. Previous studies have demonstrated that truncated TGF-β type II receptor (t-TGF-βRII) is unable to continue signal transduction but is still capable of binding to TGF-β, thereby blocking the TGF-β signaling pathway. Hepatocyte growth factor (HGF) is a multifunctional growth factor that promotes tissue regeneration and wound healing. Theoretically, the combination of HGF and t-TGF-βRII would be expected to exert a synergistic effect on promoting wound healing and reducing collagen formation. In the present study, lentivirus-mediated transfection of the two genes (t-TGF-βRII/HGF) into fibroblasts in vitro and in a rat model in vivo was used. The results demonstrated that the expression of t-TGF-βRII and HGF in NIH-3T3 cells was successfully induced. The expression of both molecules significantly reduced collagen I and III expression, and also inhibited fibroblast proliferation. Furthermore, histological examination and scar quantification revealed less scarring in the experimental wound in a rat model. Moreover, on macroscopic inspection, the experimental wound exhibited less visible scarring compared with the control. Therefore, the present study demonstrated that the combination gene therapy of t-TGF-βRII and HGF promoted wound healing, with less scarring and more epithelial tissue formation, not only by suppressing the overgrowth of collagen due to its antifibrotic effect, but also by promoting tissue regeneration.


Asunto(s)
Animales , Conejos , Ratas , Transfección , Colágeno/metabolismo , Cicatriz/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Cicatriz/patología , Ratas Sprague-Dawley , Modelos Animales , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA