RESUMEN
The anterior cruciate ligament plays an important role in maintaining the stability of the knee joint. Its injury is a common cause of articular cartilage degeneration and osteoarthritis (OA). The anterior cruciate ligament transection (ACLT) method is commonly employed to construct animal models for studying osteoarthritis pathogenesis. However, the precise mechanism of how anterior cruciate ligament injury leads to osteoarthritis is not fully understood. This study utilized finite element analysis (FEA) with human medical images to simulate the biomechanical characteristics of anterior cruciate ligament (ACL) injury. Osteoarthritis models were subsequently established in C57BL/6 mice using ACLT to explore the link between ACL injury and osteoarthritis development. The results of FEA showed that, after an anterior cruciate ligament injury, abnormal stress was concentrated in the medial and lateral of the femoral and tibial articular cartilage during knee flexion and extension. In order to better display the pathological changes of articular cartilage in the stress areas, the medial tibial cartilage was selected as a representative area to observe the continuous pathological changes of articular cartilage in ACLT-induced OA mice. The articular cartilage degeneration was most dramatic at four weeks post ACLT operation and then remained relatively stable. This study may have significant implications for the development of animal models of osteoarthritis and provide a reference for histopathological research on osteoarthritis.
RESUMEN
Pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) has been introduced for the mobilization of peripheral blood stem cells (PBSCs). However, no cases of acute lung injury (ALI) in healthy donors have been reported, and the underlying mechanisms remain poorly understood. We first reported a case of ALI caused by PEG-rhG-CSF in a healthy Chinese donor, characterized by hemoptysis, hypoxemia, and patchy shadows. Ultimately, hormone administration, planned PBSC collection, leukocyte debridement, and planned PBSC collection resulted in active control of the donor's ALI. The donor's symptoms improved without any adverse effects, and the PBSC collection proceeded without incident. Over time, the lung lesion was gradually absorbed and eventually returned to normal. PEG-rhG-CSF may contribute to ALI in healthy donors via mechanisms involving neutrophil aggregation, adhesion, and the release of inflammatory mediators in the lung. This case report examines the clinical manifestations, treatment, and mechanism of lung injury induced by PEG-rhG-CSF-mobilized PBSCs.
Asunto(s)
Lesión Pulmonar Aguda , Factor Estimulante de Colonias de Granulocitos , Movilización de Célula Madre Hematopoyética , Polietilenglicoles , Proteínas Recombinantes , Humanos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/inducido químicamente , Factor Estimulante de Colonias de Granulocitos/efectos adversos , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Movilización de Célula Madre Hematopoyética/efectos adversos , Movilización de Célula Madre Hematopoyética/métodos , Polietilenglicoles/efectos adversos , Masculino , Adulto , Trasplante de Células Madre de Sangre Periférica/efectos adversos , Células Madre de Sangre Periférica , Donantes de Tejidos , Donantes de SangreRESUMEN
T-cell acute lymphoblastic leukemia (T-ALL) represents an area of highly unmet medical needs. Once relapsed, patients have limited treatment options and poor prognosis. T-ALL antigens such as CD7 is extensively expressed in normal T cells and natural killer (NK) cells, and extending the success of CAR-T therapy to T cell malignancies was challenged by CAR-T cell fratricide, high production cost, and potential product contaminations. GC027 is an "off-the-shelf" allogeneic CD7 targeted CAR-T therapeutic product for T cell malignancies. It demonstrated superior cell expansion and antileukemia efficacy in mouse xenograft model. In our previous study, we observed promising efficacy results in the first two relapsed and refractory(R/R) T-ALL patients treated with GC027. In the expanded study, 11 out of 12 patients had rapid eradication of T-lymphoblasts and reached complete response within 1-month after GC027 infusion. GC027 cells expanded quickly beginning at infusion and reached to peak around 5-10 days after infusion. For most patients with a response(9/11), GC027 could not be detected via flow cytometry or qPCR 4 weeks after infusion. One patient had progression free survival of >3 years. With manageable toxicity profile, GC027 demonstrated superior clinical efficacy to standard chemotherapy regimens in (R/R) T cell malignancies.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Linfocitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Antígenos CD19RESUMEN
PURPOSE: Although chimeric antigen receptor T-cell (CAR-T) therapy development for B-cell malignancies has made significant progress in the last decade, broadening the success to treating T-cell acute lymphoblastic leukemia (T-ALL) has been limited. We conducted two clinical trials to verify the safety and efficacy of GC027, an "off-the-shelf" allogeneic CAR-T product targeting T-cell antigen, CD7. Here, we report 2 patients as case reports with relapsed/refractory T-ALL who were treated with GC027. PATIENTS AND METHODS: Both the trials reported here were open-label and single-arm. A single infusion of GC027 was given to each patient after preconditioning therapy. RESULT: Robust expansion of CAR-T cells along with rapid eradication of CD7+ T lymphoblasts were observed in the peripheral blood, bone marrow, and cerebrospinal fluid. Both patients achieved complete remission with no detectable minimal residual disease. At data cutoff, 30 September 2020, 1 of the 2 patients remains in ongoing remission for over 1 year after CAR T-cell infusion. Grade 3 cytokine release syndrome (CRS) occurred in both patients and was managed by a novel approach with a ruxolitinib-based CRS management. Ruxolitinib showed promising activity in a preclinical study conducted at our center. No graft-versus-host disease was observed. CONCLUSIONS: The two case reports demonstrate that a standalone therapy with this novel CD7-targeted "off-the-shelf" allogeneic CAR-T therapy may provide deep and durable responses in select patients with relapsed/refractory T-ALL. GC027 might have a potential to be a promising new approach for treating refractory/relapsed T-ALL. Further studies are warranted.