Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Curr Microbiol ; 81(8): 228, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890167

RESUMEN

Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.


Asunto(s)
Bacillus amyloliquefaciens , Lactuca , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiología , Lactuca/microbiología , Lactuca/crecimiento & desarrollo , Nutrientes/metabolismo , Microbiota , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Suelo/química
2.
Langmuir ; 39(48): 17427-17435, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37975860

RESUMEN

Although the self-transport of liquid droplets by a gradient-textured substrate can break away from the energy input, the long distance and even continuous spontaneous motion of droplets will be limited by the length in the surface-gradient direction. This article introduces a novel design with a monolayer graphene-covered multibranch gradient groove surface (GMGGS). The design aims to achieve long-distance, continuous self-transport of a mercury (Hg) droplet by merging with other mercury droplets, and the process is carried out using molecular dynamics (MD) simulation. This method achieves the merging of mercury droplets through the structure of multibranch gradient grooves, and we have observed that the merged mercury droplet can be reaccelerated in the gradient groove. The results demonstrate that droplet merging allows for control over the surface morphology variations of mercury droplets within the gradient groove. This creates a forward pressure difference, which leads to reacceleration of the mercury droplets. In light of this mechanism, the trunk droplet can achieve long-distance continuous self-transport on the GMGGS by continuously merging with branch droplets. These findings will broaden our comprehension of droplet merging and self-transport behavior, offering corresponding theoretical support for the long-distance continuous self-transport of droplets.

3.
Ecotoxicol Environ Saf ; 220: 112407, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119926

RESUMEN

2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application. The present research showed that expressing the Acidithiobacillus ferrooxidans single-strand DNA-binding protein gene (AfSSB) can improve the tolerance of Arabidopsis and tall fescue to TNT and cobalt. Compared to control plants, the AfSSB transformed Arabidopsis and tall fescue exhibited enhanced phytoremediation of TNT and cobalt separately contaminated soil and co-contaminated soil. The comet analysis revealed that the AfSSB transformed Arabidopsis suffer reduced DNA damage than control plants under TNT or cobalt exposure. In addition, the proteomic analysis revealed that AfSSB improves TNT and cobalt tolerance by strengthening the reactive superoxide (ROS) scavenging system and the detoxification system. Results presented here serve as strong theoretical support for the phytoremediation potential of organic and metal pollutants mediated by single-strand DNA-binding protein genes. SUMMARIZES: This is the first report that AfSSB enhances phytoremediation of 2,4,6-trinitrotoluene and cobalt separately contaminated and co-contaminated soil.


Asunto(s)
Cobalto/metabolismo , Proteínas de Unión al ADN/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Contaminantes del Suelo/metabolismo , Trinitrotolueno/metabolismo , Acidithiobacillus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biodegradación Ambiental , Proteínas de Unión al ADN/genética , Lolium/genética , Lolium/metabolismo , Plantas Modificadas Genéticamente/genética , Proteómica
4.
J Am Soc Nephrol ; 31(5): 1024-1034, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32238475

RESUMEN

BACKGROUND: Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. METHODS: We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. RESULTS: Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm's highly organized surface structure-essential for filtration-was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. CONCLUSIONS: Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Endocitosis , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/fisiología , Podocitos/metabolismo , Proteínas de Transporte Vesicular/fisiología , Animales , Animales Modificados Genéticamente , Factor Natriurético Atrial/metabolismo , Forma de la Célula , Dextranos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Silenciador del Gen , Hemolinfa/metabolismo , Ratones , Complejos Multiproteicos/genética , Podocitos/ultraestructura , Proteínas de Transporte Vesicular/genética
5.
Hum Mol Genet ; 26(4): 768-780, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28164240

RESUMEN

Many genetic mutations have been identified as monogenic causes of nephrotic syndrome (NS), but important knowledge gaps exist in the roles of these genes in kidney cell biology and renal diseases. More animal models are needed to assess the functions of these genes in vivo, and to determine how they cause NS in a timely manner. Drosophila nephrocytes and human podocytes share striking similarities, but to what degree these known NS genes play conserved roles in nephrocytes remains unknown. Here we systematically studied 40 genes associated with NS, including 7 that have not previously been analysed for renal function in an animal model. We found that 85% of these genes are required for nephrocyte functions, suggesting that a majority of human genes known to be associated with NS play conserved roles in renal function from flies to humans. To investigate functional conservation in more detail, we focused on Cindr, the fly homolog of the human NS gene CD2AP. Silencing Cindr in nephrocytes led to dramatic nephrocyte functional impairment and shortened life span, as well as collapse of nephrocyte lacunar channels and effacement of nephrocyte slit diaphragms. These phenotypes could be rescued by expression of a wild-type human CD2AP gene, but not a mutant allele derived from a patient with CD2AP-associated NS. We conclude that the Drosophila nephrocyte can be used to elucidate clinically relevant molecular mechanisms underlying the pathogenesis of most monogenic forms of NS, and to efficiently generate personalized in vivo models of genetic renal diseases bearing patient-specific mutations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Riñón/fisiopatología , Proteínas de Microfilamentos/genética , Síndrome Nefrótico/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Silenciador del Gen , Humanos , Mutación , Síndrome Nefrótico/fisiopatología , Fenotipo , Podocitos/metabolismo , Podocitos/patología
7.
Cell Tissue Res ; 368(3): 615-627, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28180992

RESUMEN

The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Proteínas de Unión al GTP rab/metabolismo , Animales , Tamaño de la Célula , Vesículas Citoplasmáticas , Drosophila/citología , Drosophila/ultraestructura , Femenino , Silenciador del Gen , Riñón/citología , Riñón/enzimología , Riñón/ultraestructura , Lisosomas/enzimología , Masculino , Podocitos/enzimología , Podocitos/ultraestructura , Proteínas de Unión al GTP rab/genética
9.
Clin Exp Pharmacol Physiol ; 42(6): 617-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810251

RESUMEN

Two studies have concluded that lithium exposure extends the lifespan of Caenorhabditis elegans. However, the effect of lithium on another widely used model organism, Drosophila melanogaster, remains unclear. Here, we demonstrate that chronic treatment with a low to moderate dose of lithium chloride does not extend lifespan in D. melanogaster and that the drug abolishes the female lifespan advantage in flies.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Cloruro de Litio/administración & dosificación , Longevidad/efectos de los fármacos , Caracteres Sexuales , Animales , Drosophila melanogaster/fisiología , Esquema de Medicación , Femenino , Longevidad/fisiología , Masculino , Tasa de Supervivencia/tendencias , Resultado del Tratamiento
10.
Proteomics ; 14(21-22): 2485-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25103794

RESUMEN

The apoptosis of mesangial cells (MCs) plays a critical role in the pathological progress of MesPGN. Septin2, a filamentous GTPase, is implicated in the apoptotic progress of MCs in the rat MesPGN model. However, the molecular mechanism of SEPT2 in MCs apoptosis is not clear. Here, we present the FHL2-driven molecular network as the main mechanism of SEPT2-mediated rat primary MCs apoptosis. First, we proved that the expression of FHL2 and Septin2 were closely related with MCs apoptosis in anti-Thy1 nephritis model. Then, it was found that FHL2 was a new interaction protein of Septin2 and Septin2 knockdown could induce MC apoptosis by FHL2-mediatied signal pathways including p-ERK1 and p-AKT. We applied label-Free quantitative proteomics to identify the mechanism of Septin2/FHL2-regulated apoptosis. Bioinformatics analysis revealed that FHL2-driven molecular network composed of biological functions including glycolysis, oxidative stress, ribonucleotide metabolism, actin cytoskeleton regulation, and signaling pathway, was the main mechanism of SETP2-mediated apoptosis. Furthermore, we showed that the effect of Septin2 knockdown on MC apoptosis could be alleviated by the overexpression of FHL2. Overall, this study illustrated the FHL2-driven molecular network controlling SEPT2-mediated apoptosis in MCs and their potential roles in mesangial proliferative nephritis.


Asunto(s)
Proteínas con Homeodominio LIM/metabolismo , Células Mesangiales/citología , Proteínas Musculares/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Septinas/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Células Cultivadas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas con Homeodominio LIM/genética , Células Mesangiales/metabolismo , Proteínas Musculares/genética , Factores de Crecimiento Nervioso/genética , Mapeo de Interacción de Proteínas , Ratas , Septinas/genética , Transducción de Señal , Factores de Transcripción/genética
11.
J Am Soc Nephrol ; 24(2): 191-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23291470

RESUMEN

The difficulty in accessing mammalian nephrons in vivo hinders the study of podocyte biology. The Drosophila nephrocyte shares remarkable similarities to the glomerular podocyte, but the lack of a functional readout for nephrocytes makes it challenging to study this model of the podocyte, which could potentially harness the power of Drosophila genetics. Here, we present a functional analysis of nephrocytes and establish an in vivo system to screen for renal genes. We found that nephrocytes efficiently take up secreted fluorescent protein, and therefore, we generated a transgenic line carrying secreted fluorescent protein and combined it with a nephrocyte-specific driver for targeted gene knockdown, allowing the identification of genes required for nephrocyte function. To validate this system, we examined the effects of knocking down sns and duf, the Drosophila homologs of nephrin and Neph1, respectively, in pericardial nephrocytes. Knockdown of sns or duf completely abolished the accumulation of the fluorescent protein in pericardial nephrocytes. Examining the ultrastructure revealed that the formation of the nephrocyte diaphragm and lacunar structure, which is essential for protein uptake, requires sns. Our preliminary genetic screen also identified Mec2, which encodes the homolog of mammalian Podocin. Taken together, these data suggest that the Drosophila pericardial nephrocyte is a useful in vivo model to help identify genes involved in podocyte biology and facilitate the discovery of renal disease genes.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Estudios de Asociación Genética/métodos , Túbulos de Malpighi/fisiología , Podocitos/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Femenino , Biblioteca de Genes , Estudios de Asociación Genética/instrumentación , Hemolinfa/fisiología , Masculino , Túbulos de Malpighi/citología , Podocitos/citología , Interferencia de ARN
12.
J Am Soc Nephrol ; 24(2): 209-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23264686

RESUMEN

The insect nephrocyte and the mammalian glomerular podocyte are similar with regard to filtration, but it remains unclear whether there is an organ or cell type in flies that reabsorbs proteins. Here, we show that the Drosophila nephrocyte has molecular, structural, and functional similarities to the renal proximal tubule cell. We screened for genes required for nephrocyte function and identified two Drosophila genes encoding orthologs of mammalian cubilin and amnionless (AMN), two major receptors for protein reabsorption in the proximal tubule. In Drosophila, expression of dCubilin and dAMN is specific to nephrocytes, where they function as co-receptors for protein uptake. Targeted expression of human AMN in Drosophila nephrocytes was sufficient to rescue defective protein uptake induced by dAMN knockdown, suggesting evolutionary conservation of Cubilin/AMN co-receptors function from flies to humans. Furthermore, we found that Cubilin/AMN-mediated protein reabsorption is required for the maintenance of nephrocyte ultrastructure and fly survival under conditions of toxic stress. In conclusion, the insect nephrocyte combines filtration with protein reabsorption, using evolutionarily conserved genes and subcellular structures, suggesting that it can serve as a simplified model for both podocytes and the renal proximal tubule.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Túbulos de Malpighi/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Podocitos/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Túbulos de Malpighi/citología , Proteínas de la Membrana , Podocitos/citología , Proteínas/genética , Proteínas/metabolismo , Interferencia de ARN
13.
Materials (Basel) ; 17(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063881

RESUMEN

In this paper, a Cr coating was prepared by induction heating and pack-cementation chromizing on AISI 304 austenitic stainless steel. Then, the cold-rolling deformation and annealing treatment were introduced to refine the coarse matrix grains caused by pack-chromizing and improve the overall performance of 304 austenitic stainless steel. The phase composition, element distribution, and microstructure of the coating were carefully characterized. The microhardness, wear resistance, and corrosion resistance of the coating were tested. The results show that the Cr coating with a thickness of 100 µm is mainly composed of a (Cr,Fe)23C6, (Cr,Fe)7C3, and α-Fe-Cr solid solution. After the cold-rolling deformation and subsequent annealing treatment, the grains are significantly refined and the Cr coating is divided into two layers, consisting of carbon-chromium compounds such as Cr23C6, Cr7C3, Cr2C, and Cr3C2 in the surface layer and a Fe-Cr solid solution in the subsurface layer. The cold-rolling deformation and annealing treatment significantly improved the microhardness and wear resistance of the coated sample, and the corrosion resistance was also better than that of the uncoated sample.

14.
J Ethnopharmacol ; 326: 117968, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38428655

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Urolithiasis is one of the oldest and most widespread urological diseases suffered globally. In the long history of Traditional Chinese Medicine, there're numerous herbs documented with strangury-relieving properties playing crucial roles in treating various urological disorders, including dysuria, hematuria, and renal colic, etc., which may be caused by urolithiasis. Exploring these herbs may reveal safer, more effective, and cost-efficient drugs and therapies for urolithiasis. AIM OF THE STUDY: This study aims to assess the anti-urolithiasis efficacy and safety of 46 Chinese traditional and folk herbal drugs using the fruit fly (Drosophila melanogaster) kidney stone model, in order to identify the most valuable ethnomedicinal materials. MATERIALS AND METHODS: Water extract and 50% ethanol extract of each herb were prepared respectively. 0.2% (w/w) sodium oxalate was chosen as appropriate lithogenic agent through fruit fly life span study. Male fruit-flies within three days of emergence were aged for an additional three days, then were randomly divided into experimental groups, model group and control groups (n = 20). The flies in blank control group, model group and positive control group were fed with standard food, standard food containing 0.2% sodium oxalate, standard food containing 0.2% sodium oxalate and 3% (w/w) Garcinia cambogia extract, respectively. Meanwhile, flies in the experimental groups were raised on standard food containing 0.2% sodium oxalate and 3% (w/w) herbal extract. The anti-urolithiasis capability of the extracts was evaluated using stone area ratio (the stone area divided by the area of the Malpighian tubule) and stone-clearing rate. Additionally, the 7-day mortality rate was employed as an indicator of safety. RESULTS: Out of the 46 herbs, 24 exhibited significant anti-urolithiasis effects in their water extracts. Among them, Herba Nephrolepidis, Herba Humuli, Herba Desmodii Styracifolii, Cortex Plumeriae Rubrae, and Herba Mimosae Pudicae showed us a low 7-day mortality rate of fruit-flies as well. However, only a limited number of herbal extracts (8 out of 46) showed obvious anti-urolithiasis activity in their 50% ethanol extracts. CONCLUSION: Highly potential anti-urolithiasis candidates were discovered from strangury-relieving herbs recorded in classical Traditional Chinese Medicine works, highlighting the significant value of traditional and folk ethnopharmacological knowledge.


Asunto(s)
Cálculos Renales , Urolitiasis , Animales , Masculino , Drosophila melanogaster , Disuria/tratamiento farmacológico , Extractos Vegetales/efectos adversos , Urolitiasis/tratamiento farmacológico , Cálculos Renales/tratamiento farmacológico , Ácido Oxálico/uso terapéutico , Agua , Etanol/uso terapéutico
15.
ACS Appl Mater Interfaces ; 15(46): 54119-54128, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942537

RESUMEN

The capture and utilization of underwater fuel bubbles such as methane can alleviate the greenhouse effect, solve the global energy crisis, and possibly improve the endurance of underwater equipment. However, previous research routinely failed to achieve the integrated process of continuous adsorption, transportation, and collection of bubbles limited by the trade-off between the bubble adhesion and transport efficiency dependent on interfacial pinning, tremendously hindering the direct capture and utilization of underwater fuel bubbles. To break through this bottleneck, a magnetic-guided conical arrayed surface (CAS) associated with a laser etching technique is fabricated conveniently to realize superhydrophobicity. The bubbles on laser-etched CAS have higher adhesiveness and low-pinning transport compared with those on the nonlaser-etched surface. Intriguingly, the gas film adsorbed within the CAS seems to be a gas channel, which accelerates the bubble coalescence and fast spreading to eventually realize the integration of transport, coalescence, and collection. The dynamic behaviors of bubble adsorption, transportation, and coalescence on CAS are probed to reveal the mechanism of the gas film-generating process within conical arrays. Furthermore, a novel underwater bubble-collecting device with multiangled CAS is proposed to achieve multidirectional capture, highly efficient transportation, and collection of rising bubbles. The results advance our understanding of dynamic behaviors of bubbles at solid-liquid interfaces and facilitate design and manufacturing of an apparatus for bubble collection.

16.
Theranostics ; 13(4): 1311-1324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923529

RESUMEN

Rationale: Mammalian renal proximal tubules can partially regenerate after acute kidney injury (AKI). However, cells participating in the renal proximal tubule regeneration remain to be elucidated. Wilms' tumor 1 (WT1) expresses in a subtype of glomeruli parietal epithelial cells (PECs) in adult kidneys, it remains unclear whether these WT1+ PECs play a role in renal regeneration/repair after AKI. Methods: Ischemia-reperfusion injury (IRI) mouse model was used to investigate the expression pattern of WT1 in the kidney after severe AKI. Conditional deletion of WT1 gene mice were generated using Pax8CreERT2 and WT1fl/fl mice to examine the function of WT1. Then, genetic cell lineage tracing and single-cell RNA sequencing were performed to illustrate that WT1+ PECs develop into WT1+ proximal tubular epithelial cells (PTECs). Furthermore, in vitro clonogenicity, direct differentiation analysis and in vivo transplantation were used to reveal the stem cell-like properties of these WT1+ PECs. Results: The expression of WT1 protein in PECs and PTECs was increased after severe AKI. Conditional deletion of WT1 gene in PTECs and PECs aggravated renal tubular injury after severe AKI. WT1+ PECs develop into WT1+ PTECs via the transient scattered tubular cell stage, and these WT1+ PECs possess specific stem cell-like properties. Conclusions: We discovered a group of WT1+ PECs that promote renal proximal tubule regeneration/repair after severe AKI, and the expression of WT1 in PECs and PTECs is essential for renal proximal tubule regeneration after severe kidney injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Túbulos Renales/patología , Riñón/patología , Túbulos Renales Proximales/metabolismo , Lesión Renal Aguda/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Daño por Reperfusión/metabolismo , Mamíferos , Proteínas WT1/genética , Proteínas WT1/metabolismo
17.
Front Cell Dev Biol ; 11: 1171637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215091

RESUMEN

Protein reabsorption in renal proximal tubules is essential for maintaining nutrient homeostasis. Renal proximal tubule-specific gene knockout is a powerful method to assess the function of genes involved in renal proximal tubule protein reabsorption. However, the lack of inducible renal proximal tubule-specific Cre recombinase-expressing mouse strains hinders the study of gene function in renal proximal tubules. To facilitate the functional study of genes in renal proximal tubules, we developed an AMN CreERT2 knock-in mouse strain expressing a Cre recombinase-estrogen receptor fusion protein under the control of the promoter of the amnionless (AMN) gene, a protein reabsorption receptor in renal proximal tubules. AMN CreERT2 knock-in mice were generated using the CRISPR/Cas9 strategy, and the tissue specificity of Cre activity was investigated using the Cre/loxP reporter system. We showed that the expression pattern of CreERT2-mEGFP in AMN CreERT2 mice was consistent with that of the endogenous AMN gene. Furthermore, we showed that the Cre activity in AMN CreERT2 knock-in mice was only detected in renal proximal tubules with high tamoxifen induction efficiency. As a proof-of-principle study, we demonstrated that renal proximal tubule-specific knockout of Exoc4 using AMNCreERT2 led to albumin accumulation in renal proximal tubular epithelial cells. The AMN CreERT2 mouse is a powerful tool for conditional gene knockout in renal proximal tubules and should offer useful insight into the physiological function of genes expressed in renal proximal tubules.

18.
J Hazard Mater ; 419: 126428, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171665

RESUMEN

Chlorinated aromatic compounds are a serious environmental concern because of their widespread occurrence throughout the environment. Although several microorganisms have evolved to gain the ability to degrade chlorinated aromatic compounds and use them as carbon sources, they still cannot meet the diverse needs of pollution remediation. In this study, the degradation pathways for 3-chlorocatechol (3CC) and 4-chlorocatechol (4CC) were successfully reconstructed by the optimization, synthesis, and assembly of functional genes from different strains. The addition of a 13C-labeled substrate and functional analysis of different metabolic modules confirmed that the genetically engineered strains can metabolize chlorocatechol similar to naturally degrading strains. The strain containing either of these artificial pathways can degrade catechol, 3CC, and 4CC completely, although differences in the degradation efficiency may be noted. Proteomic analysis and scanning electron microscopy observation showed that 3CC and 4CC have toxic effects on Escherichia coli, but the engineered bacteria can significantly eliminate these inhibitory effects. As core metabolic pathways for the degradation of chloroaromatics, the two chlorocatechol degradation pathways constructed in this study can be used to construct pollution remediation-engineered bacteria, and the related technologies may be applied to construct complete degradation pathways for complex organic hazardous materials.


Asunto(s)
Dioxigenasas , Escherichia coli , Biodegradación Ambiental , Catecoles , Escherichia coli/genética , Proteómica
19.
Dis Model Mech ; 14(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437681

RESUMEN

Aging is a multifaceted process regulated by multiple cellular pathways, including the proteostasis network. Pharmacological or genetic enhancement of the intracellular proteostasis network extends lifespan and prevents age-related diseases. However, how proteostasis is regulated in different tissues throughout the aging process remains unclear. Here, we show that Drosophila homologs of Cubilin- and Amnionless (dCubilin and dAMN, respectively)-mediated protein reabsorption (CAMPR) from hemolymph insect blood by nephrocytes modulate longevity through regulating proteostasis in muscle and brain tissues. We find that overexpression of dAMN receptor in nephrocytes extends lifespan, whereas nephrocyte-specific dCubilin or dAMN RNAi knockdown shortens lifespan. We also show that CAMPR in nephrocytes regulates proteostasis in hemolymph and improves healthspan. In addition, we show that enhanced CAMPR in nephrocytes slows down the aging process in muscle and brain by maintaining the proteostasis network in these tissues. Altogether, our work has revealed an inter-organ communication network across nephrocytes and muscle/neuronal tissue that is essential for maintaining proteostasis, and to delay senescence in these organs. These findings provide insight into the role of renal protein reabsorption in the aging process via this tele-proteostasis network.


Asunto(s)
Proteínas de Drosophila , Drosophila , Envejecimiento/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidad , Proteostasis
20.
AMB Express ; 11(1): 124, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463855

RESUMEN

p-Nitrophenol (PNP) is an important environmental pollutant and can causes significant environmental and health risks. Compared with the traditional methods, biodegradation is a useful one to completely remove the harmful pollutants from the environment. Here, an engineered strain was first constructed by introducing PNP biodegradation pathway via the hydroquinone (HQ) pathway into Escherichia coli. In the engineered strain BL-PNP, PNP was completely degraded to ß-ketoadipate and subsequently enter the metabolites of multiple anabolic pathways. The high tolerance and rapid degradation ability to PNP enable the engineered strain to have the potential to degrade toxic substances. The engineered strain created in this study can be used as a functional strain for bioremediation of PNP and potential toxic intermediates, and the method of assembling aromatic hydrocarbons metabolic pathway can be used to eradicate nitroaromatic pollutants in the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA