Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686562

RESUMEN

BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.

2.
Circ Res ; 130(10): 1490-1506, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35387487

RESUMEN

RATIONALE: Long-term exercise provides reliable cardioprotection via mechanisms still incompletely understood. Although traditionally considered a thermogenic tissue, brown adipose tissue (BAT) communicates with remote organs (eg, the heart) through its endocrine function. BAT expands in response to exercise, but its involvement in exercise cardioprotection remains undefined. OBJECTIVE: This study investigated whether small extracellular vesicles (sEVs) secreted by BAT and their contained microRNAs (miRNAs) regulate cardiomyocyte survival and participate in exercise cardioprotection in the context of myocardial ischemia/reperfusion (MI/R) injury. METHODS AND RESULTS: Four weeks of exercise resulted in a significant BAT expansion in mice. Surgical BAT ablation before MI/R weakened the salutary effects of exercise. Adeno-associated virus 9 vectors carrying short hairpin RNA targeting Rab27a (a GTPase required for sEV secretion) or control viruses were injected in situ into the interscapular BAT. Exercise-mediated protection against MI/R injury was greatly attenuated in mice whose BAT sEV secretion was suppressed by Rab27a silencing. Intramyocardial injection of the BAT sEVs ameliorated MI/R injury, revealing the cardioprotective potential of BAT sEVs. Discovery-driven experiments identified miR-125b-5p, miR-128-3p, and miR-30d-5p (referred to as the BAT miRNAs) as essential BAT sEV components for mediating cardioprotection. BAT-specific inhibition of the BAT miRNAs prevented their upregulation in plasma sEVs and hearts of exercised mice and attenuated exercise cardioprotection. Mechanistically, the BAT miRNAs cooperatively suppressed the proapoptotic MAPK (mitogen-associated protein kinase) pathway by targeting a series of molecules (eg, Map3k5, Map2k7, and Map2k4) in the signaling cascade. Delivery of BAT sEVs into hearts or cardiomyocytes suppressed MI/R-related MAPK pathway activation, an effect that disappeared with the combined use of the BAT miRNA inhibitors. CONCLUSIONS: The sEVs secreted by BAT participate in exercise cardioprotection via delivering the cardioprotective miRNAs into the heart. These results provide novel insights into the mechanisms underlying the BAT-cardiomyocyte interaction and highlight BAT sEVs and their contained miRNAs as alternative candidates for exercise cardioprotection.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Daño por Reperfusión Miocárdica , Tejido Adiposo Pardo/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal
3.
Circ Res ; 126(7): 857-874, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32079489

RESUMEN

RATIONALE: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/ß-catenin complex formation and active ß-catenin levels in the nucleus. ß-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via ß-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.


Asunto(s)
Tejido Adiposo/citología , Cadherinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Cadherinas/genética , Adhesión Celular , Proliferación Celular , Células Cultivadas , Factor de Crecimiento de Hepatocito/metabolismo , Metaloproteinasa 10 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
4.
J Mol Cell Cardiol ; 160: 27-41, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224725

RESUMEN

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVß5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).


Asunto(s)
Cardiotónicos/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/tratamiento farmacológico , Fibronectinas/administración & dosificación , Estrés Nitrosativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Vitronectina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Cardiomegalia/prevención & control , Cardiotónicos/sangre , Modelos Animales de Enfermedad , Fibronectinas/sangre , Fibronectinas/genética , Masculino , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes/administración & dosificación , Resultado del Tratamiento , Remodelación Ventricular/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 529(4): 1066-1072, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819566

RESUMEN

Obesity has become a worldwide pandemic and is associated with various metabolic diseases such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Fas-activated serine/threonine kinase (Fastk) is a multifunctional protein localized in the mitochondrion; however, the role of Fastk in obesity-related metabolic disorders remains unexplored. Here we found that Fastk expression was specifically induced in livers of high fat (HF) diet-fed mice and in saturated fatty acid (such as palmitate)-loaded hepatocytes. Genetic ablation of Fastk ameliorated HF diet-induced insulin resistance, glucose intolerance, and hepatic steatosis. Further studies confirmed that Fastk knockout suppressed hepatic gluconeogenesis and lipogenesis in HF diet-stressed livers and in palmitate-loaded hepatocytes. Mechanistically, Fastk ablation significantly preserved sirtuin-1 (SIRT1) expression and activity in livers of HF diet-fed mice and in palmitate-loaded hepatocytes. Inhibition of SIRT1 activity by EX-527 (a specific inhibitor of SIRT1) totally abolished the suppressive effects of Fastk knockout on gluconeogenesis and lipogenesis in cultured hepatocytes. In conclusion, these data for the first time demonstrate that Fastk critically controls hepatic gluconeogenesis and lipogenesis mainly through modulating SIRT1 signaling. Intervening Fastk expression or activity might be a promising therapeutic strategy for the treatment of obesity-associated metabolic diseases.


Asunto(s)
Eliminación de Gen , Glucosa/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Animales , Gluconeogénesis , Hepatocitos/metabolismo , Lipogénesis , Ratones , Palmitatos
6.
Am J Physiol Heart Circ Physiol ; 316(1): H233-H244, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412442

RESUMEN

Stem cell therapy is a potentially effective and promising treatment for ischemic heart disease. Resistin, a type of adipokine, has been found to bind to adipose-derived mesenchymal stem cells (ADSCs). However, the effects of resistin on cardiac homing by ADSCs and on ADSC-mediated cardioprotective effects have not been investigated. ADSCs were obtained from enhanced green fluorescent protein transgenic mice. C57BL/6J mice were subjected to myocardial ischemia-reperfusion (I/R) or sham operations. Six hours after the I/R operation, mice were intravenously injected with resistin-treated ADSCs (ADSC-resistin) or vehicle-treated ADSCs (ADSC-vehicle). Cardiac homing by ADSCs and cardiomyocyte apoptosis were investigated 3 days after I/R. Cardiac function, fibrosis, and angiogenesis were evaluated 4 wk after I/R. Cellular and molecular mechanisms were investigated in vitro using cultured ADSCs. Both immunostaining and flow cytometric experiments showed that resistin treatment promoted ADSC myocardial homing 3 days after intravenous injection. Echocardiographic experiments showed that ADSC-resistin, but not ADSC-vehicle, significantly improved left ventricular ejection fraction. ADSC-resistin transplantation significantly mitigated I/R-induced fibrosis and reduced atrial natriuretic peptide/brain natriuretic peptide mRNA expression. In addition, cardiomyocyte apoptosis was reduced, whereas angiogenesis was increased by ADSC-resistin treatment. At the cellular level, resistin promoted ADSC proliferation and migration but did not affect H2O2-induced apoptosis. Molecular experiments identified the ERK1/2-matrix metalloproteinase-9 pathway as a key component mediating the effects of resistin on ADSC proliferation and migration. These results demonstrate that resistin can promote homing of injected ADSCs into damaged heart tissue and stimulate functional recovery, an effect mediated through the ERK1/2 signaling pathway and matrix metalloproteinase-9. NEW & NOTEWORTHY First, intravenous injection of adipose-derived mesenchymal stem cells (ADSCs) treated with resistin significantly increased angiogenesis and reduced myocardial apoptosis and fibrosis in a murine model of ischemia-reperfusion, resulting in improved cardiac performance. Second, resistin treatment significantly increased myocardial homing of intravenously delivered ADSCs. Finally, the ERK1/2-matrix metalloproteinase 9 pathway contributed to the higher proliferative and migratory capacities of ADSCs treated with resistin.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Daño por Reperfusión Miocárdica/terapia , Resistina/farmacología , Tejido Adiposo/citología , Animales , Apoptosis , Gasto Cardíaco , Movimiento Celular , Células Cultivadas , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica
7.
Lipids Health Dis ; 18(1): 52, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764838

RESUMEN

BACKGROUND: This study was designed to test the hypothesis that κ-opioid receptor (κ-OR) stimulation reduces palmitate-induced HUVECs apoptosis and to investigate its mechanisms. METHODS: HUVECs were subjected to sodium palmitate, apoptosis and cell viability were determined, HUVECs were treated with specific inhibitors to PI3K, Akt, eNOS and siRNAs targeting κ-OR and Akt. Groups were divided as follows: the control group, the sodium palmitate group, the sodium palmitate+U50,488H (a selective κ-OR agonist) group and the sodium palmitate+U50,488H + nor-BNI (a selective κ-OR antagonist) group. RESULTS: Treatment with sodium palmitate significantly reduced cell viability and increased apoptosis rate which were significantly alleviated by pretreatment with U50,488H, the effect of U50,488H was abolished by nor-BNI. Phosphorylation of Akt and eNOS, as well as NO production were attenuated and accompanied by an increased expression of caspase 3 when HUVECs were subjected to sodium palmitate, and all these changes were restored by pretreatment with U50,488H, the effects of U50,488H were abolished by nor-BNI, and specific inhibitors to PI3K, Akt, eNOS, respectively. SiRNAs targeting κ-OR or Akt abolished the effects of U50,488H on phosphorylation of Akt and eNOS as well as the expressions of caspase 3, Bax and Bcl-2. SiRNAs targeting Akt elicited no effect on the expression of κ-OR. CONCLUSION: This study provides the evidence for the first time that κ-OR stimulation possesses anti-palmitate-induced apoptosis effect, which is mediated by PI3K/Akt/eNOS signaling pathway.


Asunto(s)
3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Opioides kappa/genética , Analgésicos Opioides/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Palmítico/antagonistas & inhibidores , Ácido Palmítico/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
8.
J Mol Cell Cardiol ; 108: 106-113, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28549781

RESUMEN

Diabetes is a major health problem worldwide. As well-known, diabetes greatly increases cardiac vulnerability to ischemia/reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Nucleostemin (NS) is a nucleolar protein that controls ribosomal biogenesis and exerts cardioprotective effects against I/R injury. However, whether NS-mediated ribosomal biogenesis regulates ischemic vulnerability of diabetic hearts remains unanswered. Utilizing myocardial I/R mouse models, we found that cardiac NS expression significantly increased in response to I/R in normal diet (ND)-fed mice. Surprisingly, cardiac NS failed to be upregulated in high fat diet (HFD)-induced diabetic mice, accompanied by obvious ribosomal dysfunction. Compared with ND group, cardiac specific overexpression of NS by adenovirus (AV) injection significantly restored I/R-induced ribosomal function enhancement, reduced cardiomyocyte apoptosis, improved cardiac function, and decreased infarct sizes in diabetic mice. Notably, co-treatment of homoharringtonine (HHT), a selective inhibitor of ribosomal function, totally blocked NS-mediated cardioprotective effects against I/R injury. Furthermore, in cultured cardiomyocytes, saturated fatty acids treatment, but not high glucose exposure, significantly inhibited simulated I/R-induced NS upregulation and ribosomal function improvement. In conclusion, these data for the first time demonstrate that NS dysregulation induced by saturated fatty acids exposure might be an important cause of increased ischemic vulnerability to I/R injury in diabetic hearts. Targeting NS dysregulation and subsequent ribosomal dysfunction could be a promising therapeutic strategy for diabetic I/R injury management.


Asunto(s)
Proteínas Portadoras/metabolismo , Complicaciones de la Diabetes , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Proteínas Nucleares/metabolismo , Animales , Apoptosis , Proteínas Portadoras/genética , Línea Celular , Células Cultivadas , Diabetes Mellitus Experimental , Proteínas de Unión al GTP , Expresión Génica , Masculino , Ratones , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ARN , Ribosomas/metabolismo
9.
Biochem Biophys Res Commun ; 482(4): 658-664, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27865836

RESUMEN

Activation of κ-opioid receptor (KOR) ameliorates myocardial ischemia/reperfusion (I/R) injury; however, cardioprotective effects of KOR stimulation disappear in type 1 diabetic subjects with hyperglycemia. The molecular mechanisms underlying this phenomenon remain unknown. Here we found that KOR expression was obviously downregulated and KOR agonism-induced contractile-regulatory and cardioprotective effects were significantly impaired in hearts isolated from streptozotocin (STZ) injection-induced diabetic mice. These in vivo data identified cardiac KOR desensitization as a novel characteristic of the diabetic heart. In cultured cardiomyocytes, high glucose (HG) caused obvious KOR downregulation, accompanied by an upregulation of G protein coupled receptor kinase-2 (GRK2). We found that HG exposure increased the interaction between GRK2 and KOR. More importantly, HG-induced KOR downregulation was reversed by small interfering RNA (siRNA)-mediated GRK2 inhibition. GRK2 knockdown also restored KOR agonism-mediated protection against simulated I/R injury in cardiomyocytes. These in vitro data revealed an essential role of GRK2 in HG-induced KOR desensitization. Finally, cardiac-specific GRK2 knockdown by intramyocardial siRNA injection blocked KOR downregulation and restored contractile-regulatory and cardioprotective effects of KOR agonism in hearts of diabetic mice. In conclusion, these data for the first time demonstrate that GRK2 upregulation is largely responsible for cardiac KOR desensitization in diabetic individuals, which provides novel insights into the management of myocardial I/R injury in patients with diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Receptores Opioides kappa/metabolismo , Regulación hacia Arriba , Analgésicos Opioides/química , Animales , Apoptosis , Línea Celular , Regulación hacia Abajo , Glucosa/química , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Ratas , Daño por Reperfusión , Estreptozocina
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1556-1567, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28216285

RESUMEN

It has been well documented that hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. However, the exact molecular mechanism which mediates this process has not been fully described. The current study aimed to investigate the role of hypoadiponectinemia-induced NLRP3 inflammasome activation in diabetic vascular endothelial dysfunction and its molecular mechanism. Male adult adiponectin knockout mice and wild type mice were fed with a high fat diet to establish a type 2 diabetic mellitus model. In addition, human umbilical vein endothelial cells (HUVECs) were cultured and subjected to high glucose/high fat (HG/HF). The NLRP3 inflammasome activation was increased in type 2 diabetic mice and treatment of diabetic aortic segments with MCC950, a potent selective inhibitor of NLRP3 inflammasome ex vivo improved endothelial-dependent vasorelaxation. NLRP3 inflammasome activation and vascular endothelial injury were significantly increased in APN-KO mice compared with WT mice in diabetes and MCC950 decreased diabetic vascular endothelial dysfunction to comparable levels in APN-KO mice and WT mice. Adiponectin could decrease NLRP3 inflammasome activation and attenuate endothelial cell injury, which was abolished by NLRP3 inflammasome overexpression. Inhibition of peroxynitrite formation preferentially attenuated NLRP3 inflammasome activation in APN-KO diabetic mice. The current study demonstrated for the first time that hypoadiponectinemia-induced NLRP3 inflammasome activation was a novel mechanism of diabetic vascular endothelial dysfunction.


Asunto(s)
Adiponectina/deficiencia , Angiopatías Diabéticas/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamasomas/metabolismo , Errores Innatos del Metabolismo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamasomas/genética , Masculino , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Vasodilatación/genética
11.
Am J Physiol Heart Circ Physiol ; 311(5): H1160-H1169, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542406

RESUMEN

Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular , Animales , Western Blotting , Vasos Coronarios/cirugía , Ecocardiografía , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insuficiencia Cardíaca/etiología , Etiquetado Corte-Fin in Situ , Ligadura , Masculino , Ratones , Infarto del Miocardio/complicaciones , Péptido Natriurético Encefálico/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Disfunción Ventricular Izquierda/etiología
12.
Am J Physiol Heart Circ Physiol ; 310(2): H250-61, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26589326

RESUMEN

Sphingosine 1-phosphate (S1P) mediates multiple pathophysiological effects in the cardiovascular system. However, the role of S1P signaling in pathological cardiac remodeling following myocardial infarction (MI) remains controversial. In this study, we found that cardiac S1P greatly increased post-MI, accompanied with a significant upregulation of cardiac sphingosine kinase-1 (SphK1) and S1P receptor 1 (S1PR1) expression. In MI-operated mice, inhibition of S1P production by using PF543 (the SphK1 inhibitor) ameliorated cardiac remodeling and dysfunction. Conversely, interruption of S1P degradation by inhibiting S1P lyase augmented cardiac S1P accumulation and exacerbated cardiac remodeling and dysfunction. In the cardiomyocyte, S1P directly activated proinflammatory responses via a S1PR1-dependent manner. Furthermore, activation of SphK1/S1P/S1PR1 signaling attributed to ß1-adrenergic receptor stimulation-induced proinflammatory responses in the cardiomyocyte. Administration of FTY720, a functional S1PR1 antagonist, obviously blocked cardiac SphK1/S1P/S1PR1 signaling, ameliorated chronic cardiac inflammation, and then improved cardiac remodeling and dysfunction in vivo post-MI. In conclusion, our results demonstrate that cardiac SphK1/S1P/S1PR1 signaling plays an important role in the regulation of proinflammatory responses in the cardiomyocyte and targeting cardiac S1P signaling is a novel therapeutic strategy to improve post-MI cardiac remodeling and dysfunction.


Asunto(s)
Cardiopatías/patología , Lisofosfolípidos/fisiología , Infarto del Miocardio/patología , Miocarditis/patología , Esfingosina/análogos & derivados , Animales , Animales Recién Nacidos , Citocinas/biosíntesis , Clorhidrato de Fingolimod/farmacología , Cardiopatías/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Miocarditis/diagnóstico por imagen , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Interferente Pequeño/genética , Ratas Sprague-Dawley , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/biosíntesis , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato , Transfección , Ultrasonografía
13.
J Mol Cell Cardiol ; 87: 138-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26225842

RESUMEN

Vascular complications are the major causes of death in patients with diabetes, and endothelial dysfunction is the earliest event in vascular complications of diabetes. It has been reported that plasma irisin level is significantly reduced in patients with type 2 diabetic patients. The present study aimed to investigate whether irisin improved endothelial function in type 2 diabetes as well as the underlying mechanisms. The type 2 diabetes model was established by feeding C57BL/6 mice with high-fat diet. The type 2 diabetic mice exhibited reduced serum irisin level and impaired endothelial function. Irisin treatment (0.5 mg/kg/d) for two weeks improved vascular function based on the evaluation of endothelium-dependent vasorelaxation and p-VASP levels. To investigate the direct endothelial protective effects of irisin, diabetic aortic segments were incubated with irisin (1 µg/ml) ex vivo. Exposure to irisin improved endothelium-dependent vasorelaxation of diabetic aortas. Mechanically, the diabetic aortic segments exhibited increased oxidative/nitrative stresses. Irisin reduced the diabetes-induced oxidative/nitrative stresses evidenced by reducing overproduction of superoxide and peroxynitrite, and down-regulation of iNOS and gp91(phox). To further investigate the protective effects of irisin on endothelial cells and the underlying mechanisms, human umbilical vein endothelial cells (HUVECs) cultured in high-glucose/high-fat (HG/HF) medium were pre-incubated with irisin. Irisin (1 µg/ml) reduced the oxidative/nitrative stresses and apoptosis induced by HG/HF in HUVECs probably via inhibiting activation of PKC-ß/NADPH oxidase and NF-κB/iNOS pathways. Taken together, irisin alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses through inhibiting signaling pathways implicating PKC-ß/NADPH oxidase and NF-κB/iNOS, suggesting that irisin may be a promising molecule for the treatment of vascular complications of diabetes.


Asunto(s)
Antioxidantes/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Fibronectinas/sangre , Vasodilatación/efectos de los fármacos , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibronectinas/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Vasodilatación/genética
14.
J Mol Cell Cardiol ; 74: 183-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24852843

RESUMEN

The adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. Recent studies have demonstrated that APN induces a marked Ca(2+) influx in skeletal muscle. However, whether APN modulates [Ca(2+)]i activity, especially [Ca(2+)]i transients in cardiomyocytes, is still unknown. This study was designed to determine whether APN modulates [Ca(2+)]i transients in cardiomyocytes. Adult male wild-type (WT) and APN knockout (APN KO) mice were subjected to myocardial ischemia/reperfusion (I/R, 30min/30min) injury. CaMKII-PLB phosphorylation and SR Ca(2+)-ATPase (SERCA2) activity were downregulated in I/R hearts of WT mice and further decreased in those of APN KO mice. Both the globular domain of APN and full-length APN significantly reversed the decrease in CaMKII-PLB phosphorylation and SERCA2 activity in WT and APN KO mice. Interestingly, compared with WT littermates, single myocytes isolated from APN KO mice had remarkably decreased [Ca(2+)]i transients, cell shortening, and a prolonged Ca(2+) decay rate. Further examination revealed that APN enhances SERCA2 activity via CaMKII-PLB signaling. In in vivo and in vitro experiments, both APN receptor 1/2 and S1P were necessary for the APN-stimulated CaMKII-PLB-SERCA2 activation. In addition, S1P activated CaMKII-PLB signaling in neonatal cardiomyocytes in a dose dependent manner and improved [Ca(2+)]i transients in APN KO myocytes via the S1P receptor (S1PR1/3). Further in vivo experiments revealed that pharmacological inhibition of S1PR1/3 and SERCA2 siRNA suppressed APN-mediated cardioprotection during I/R. These data demonstrate that S1P is a novel regulator of SERCA2 that activates CaMKII-PLB signaling and mediates APN-induced cardioprotection.


Asunto(s)
Adiponectina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Lisofosfolípidos/metabolismo , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Retículo Sarcoplasmático/metabolismo , Esfingosina/análogos & derivados , Adiponectina/antagonistas & inhibidores , Adiponectina/metabolismo , Adiponectina/farmacología , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación de la Expresión Génica , Lisofosfolípidos/farmacología , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación , Estructura Terciaria de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato
15.
Am J Physiol Endocrinol Metab ; 306(9): E1055-64, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24595307

RESUMEN

Plasma levels of adiponectin (APN) are significantly increased in patients with renal dysfunction and are inversely related to the risk of cardiovascular mortality. The present study was designed to determine the role of APN in myocardial ischemia-reperfusion (MI/R) injury in mice with renal failure and delineate the underlying mechanisms. Renal failure was induced by subtotal nephrectomy (SN). Human recombinant globular domain of adiponectin (gAd) or full-length adiponectin (fAd) was administered via intraperitoneal injection once daily for 7 consecutive days after SN, and in vivo MI/R was introduced 3 wk later. Both plasma and urinary levels of APN increased significantly in SN mice. Compared with sham-operated mice, cardiac function was significantly depressed, and myocardial infarct size and apoptosis increased in SN mice following MI/R. The aggravated MI/R injury was further intensified in APN-knockout mice and markedly ameliorated by treatment with gAd but not fAd. Moreover, SN increased myocardial NO metabolites, superoxide, and their cytotoxic reaction product peroxynitrite, upregulated inducible NO synthase expression, and decreased endothelial NOS phosphorylation. In addition, SN mice also exhibited reduced APN receptor-1 (AdipoR1) expression and AMPK activation. All these changes were further amplified in the absence of APN but reversed by gAd treatment. The present study demonstrates that renal dysfunction increases cardiac susceptibility to ischemic-reperfusion injury, which is associated with downregulated APN/AdipoR1/AMPK signaling and increased oxidative/nitrative stress in local myocardium, and provides the first evidence for the protective role of exogenous supplement of gAd on MI/R outcomes in renal failure.


Asunto(s)
Adiponectina/fisiología , Daño por Reperfusión Miocárdica/complicaciones , Miocardio/metabolismo , Insuficiencia Renal/complicaciones , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/administración & dosificación , Adiponectina/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo/fisiología , Especies de Nitrógeno Reactivo/fisiología , Receptores de Adiponectina/metabolismo , Insuficiencia Renal/metabolismo , Transducción de Señal/genética
16.
Cardiovasc Toxicol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844744

RESUMEN

Extracellular vesicles (EVs) are diverse, membrane-bound vesicles released from cells into the extracellular environment. They originate from either endosomes or the cell membrane and typically include exosomes and microvesicles. These EVs serve as crucial mediators of intercellular communication, carrying a variety of contents such as nucleic acids, proteins, and lipids, which regulate the physiological and pathological processes of target cells. Moreover, the molecular cargo of EVs can reflect critical information about the originating cells, making them potential biomarkers for the diagnosis and prognosis of diseases. Over the past decade, the role of EVs as key communicators between cell types in cardiovascular physiology and pathology has gained increasing recognition. EVs from different cellular sources, or from the same source under different cellular conditions, can have distinct impacts on the management, diagnosis, and prognosis of cardiovascular diseases. Furthermore, it is essential to consider the influence of cardiovascular-derived EVs on the metabolism of peripheral organs. This review aims to summarize recent advancements in the field of cardiovascular research with respect to the roles and implications of EVs. Our goal is to provide new insights and directions for the early prevention and treatment of cardiovascular diseases, with an emphasis on the therapeutic potential and diagnostic value of EVs.

17.
Neuroscience ; 537: 105-115, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38006962

RESUMEN

Intracerebral hemorrhage (ICH) is a severe disease with high mortality. Recently, the role of BCL-3 in ICH has started to gain attention, but its mechanism remains unclear. A collagenase injection method was used to establish an ICH model in rats, and the expression of BCL-3 were detected. Rat brain microvascular endothelial cells (rBMECs) were isolated and induced with Hemin to establish an in vitro ICH model. The expression of BCL-3 was assessed, followed by detection of cell apoptosis. In the cell model, the recruitment, polarization, and pro-inflammatory features of the microglia (MGs) were assessed after co-cultured with rBMECs. Finally, in the ICH animal model, after knockdown of BCL-3, comprehensive evaluations of inflammatory responses in brain tissue, polarization and recruitment of microglia, and apoptosis were conducted. Results revealed an upregulated expression of BCL-3 in brain tissue of the ICH animal model. In Hemin-treated rBMECs, an upward trend in BCL-3 expression was observed, accompanied by an increase of cell apoptosis. After co-culturing with the in vitro model, microglia exhibited enhanced M1 polarization and intensified inflammatory responses. However, when BCL-3 expression was inhibited in the in vitro model, a reversal occurred in the polarization tendency and inflammatory responses of microglia. Additionally, after knockdown of BCL-3 in the animal model, notable improvements occurred in M1 polarization, infiltration of macrophages, and inflammatory reactions in the brain tissue. Therefore, BCL-3 modulates the inflammatory response after ICH occurrence through the BMECs/MGs microenvironment. Additionally, BCL-3 might be a potential therapeutic target for ICH management.


Asunto(s)
Células Endoteliales , Hemina , Animales , Ratas , Hemorragia Cerebral/metabolismo , Células Endoteliales/metabolismo , Hemina/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Proteínas del Linfoma 3 de Células B/metabolismo
18.
Cardiovasc Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832923

RESUMEN

AIMS: ßII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of ßII spectrin in cardiac contractile function and pathological post-myocardial infarction remodeling remain unclear. Here, we investigated whether and how ßII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: We observed that the levels of serum ßII spectrin breakdown products (ßII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, ßII spectrin was degraded into ßII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific ßII spectrin knockout mice, we found that deletion of ßII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific ßII spectrin knockout mice had not developed, deletion of ßII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of ßII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that ßII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, ßII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability. CONCLUSION: ßII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in ßII spectrin exacerbate cardiac I/R injury.

19.
Chemosphere ; 318: 137934, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702403

RESUMEN

In this work, condensation temperature, H2O vapor, SO2, SO3 and NH3 were studied to explore the formation mechanism of nitrate ions (NO3-) and nitrite ions (NO2-) in condensable particulate matter (CPM) discharged by ultra-low emission coal-fired power plants. Some important results were obtained: (i) The concentration of NO3- and NO2- increased with the decrease of condensation temperature, and H2O vapor could also promote the formation of NO3- and NO2-. (ii) The effects of SO2 and SO3 varied at different saturated states of flue gas, which was caused by the redox reaction of SO2 and NOX or the formation of H2SO4. (iii) NH3 could promote the nucleation of NO3- and NO2-, and the promotion effect also existed in the existence of SO2 or SO3. It is worth mentioning that SO3 and SO2 might synergistically inhibit the formation of NO3- and NO2-, regardless of the presence of NH3. The research results would enrich peoples understanding of the chemical and physical characteristics of NO3- and NO2- in CPM and provide a basic reference for the control of CPM emitted from coal-fired power plants.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Nitratos , Nitritos , Dióxido de Nitrógeno , Carbón Mineral , Gases , Centrales Eléctricas
20.
Environ Pollut ; 318: 120944, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584857

RESUMEN

The objective of this study was to examine the physicochemical characteristics of polycyclic aromatic hydrocarbons (PAHs) in condensable particulate matter (CPM) during fast condensation (within several seconds). The concentration of PAHs increased as the condensation temperature decreased, indicating that the conversion of gaseous PAHs to CPM would be enhanced at low temperatures. PAH concentrations increased in relation to the number of rings in the fragment, with the high-ring (4-,5- and 6-ring) PAHs accounting for 89.70-92.30% and 99.78-99.80% of the total concentration and total toxic equivalent of PAHs. In addition, particulate-phase PAHs (0.1-1.0 µm), developed through the synergistic effect of PAHs and fine particles, were difficult to collect by fast condensation. Inorganic fine particles could be formed when ammonia-rich conditions prevail, reducing PAH condensation further. Furthermore, CPM was morphologically and chemically characterized. During the experiment, fine and well-aggregated CPMs were detected on the membrane, and the diameter of CPMs was further enhanced by the addition of 16 PAHs. Most of the C element was collected in the rinse fluid, thus indicating that PAHs in CPM were collected through condensation. Based on these findings, basic guidelines can be provided for the control of PAHs in flue gas from coal-fired power plants.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Centrales Eléctricas , Gases , Carbón Mineral/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA