Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant J ; 106(1): 142-158, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33377234

RESUMEN

Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.


Asunto(s)
Glycine max/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Fosfolipasa D/genética , Nodulación de la Raíz de la Planta/genética , Glycine max/microbiología , Simbiosis/genética , Simbiosis/fisiología
2.
Plant J ; 103(4): 1351-1371, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412123

RESUMEN

Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.


Asunto(s)
Ácidos Grasos/biosíntesis , Glycine max/metabolismo , Glucólisis , Lípidos/biosíntesis , Nodulación de la Raíz de la Planta/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucólisis/fisiología , Lipidómica , Lípidos de la Membrana/biosíntesis , Fosfolípidos/biosíntesis , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Glycine max/crecimiento & desarrollo
3.
Plant Biotechnol J ; 18(1): 155-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31161718

RESUMEN

It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.


Asunto(s)
Glycine max/genética , Lípidos/biosíntesis , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Glucólisis , Ácidos Indolacéticos , Proteínas de Plantas/genética , Glycine max/fisiología
4.
Anal Bioanal Chem ; 409(14): 3515-3525, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28424855

RESUMEN

Improvement of the nutritional quality of soybean is usually facilitated by a vast range of soybean germplasm with enough information about their multiple phytonutrients. In order to acquire this essential information from a huge number of soybean samples, a rapid analytic method is urgently required. Here, a nondestructive near-infrared reflectance spectroscopy (NIRS) method was developed for rapid and accurate measurement of 25 nutritional components in soybean simultaneously, including fatty acids palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, vitamin E (VE), α-VE, γ-VE, δ-VE, saponins, isoflavonoids, and flavonoids. Modified partial least squares regression and first, second, third, and fourth derivative transformation was applied for the model development. The 1 minus variance ratio (1-VR) value of the optimal model can reach between the highest 0.95 and lowest 0.64. The predicted values of phytonutrients in soybean using NIRS technology are comparable to those obtained from using the traditional spectrum or chemical methods. A robust NIRS can be adopted as a reliable method to evaluate complex plant constituents for screening large-scale samples of soybean germplasm resources or genetic populations for improvement of nutritional qualities. Graphical Abstract ᅟ.


Asunto(s)
Glycine max/química , Fitoquímicos/análisis , Espectroscopía Infrarroja Corta/métodos , Ácidos Grasos/análisis , Flavonoides/análisis , Análisis de los Mínimos Cuadrados , Saponinas/análisis , Vitamina E/análisis
5.
New Phytol ; 210(3): 905-21, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26725247

RESUMEN

The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.


Asunto(s)
Antocianinas/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Vías Biosintéticas , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Vías Biosintéticas/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Medicago truncatula/genética , Metabolómica , Mutación/genética , Fenotipo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica
6.
Plant Cell Environ ; 39(2): 377-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26296956

RESUMEN

Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Calcio/metabolismo , Ritmo Circadiano , Flores/fisiología , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Intercambiador de Sodio-Calcio/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cationes , Motivos EF Hand , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Células Vegetales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética , Factores de Tiempo , Vacuolas/metabolismo
7.
Hortic Res ; 11(3): uhae032, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544550

RESUMEN

Jasmonates, such as jasmonic acid (JA) and methyl jasmonate (MeJA), are crucial aspect of black tea quality. However, lipids species, hormones, and genes regulated mechanism in the jasmonate biosynthesis during black tea processing are lacking. In this study, we employed lipidomics, hormone metabolism analysis, and transcriptome profiling of genes associated with the MeJA biosynthesis pathway to investigate these factors. The contents of lipids GLs, PLs, and TAG are decreased, accompanied by the main lipids species reduced during black tea processing. Galactolipids, primarily 34:3/36:6/36:3 DGDG and 36:6/36:5/36:4 MGDG, are transformed into massive MeJA and JA in black tea processing, accompanied by the decreased SA, MeSA, IAA, and BA and increased zeatin. Additionally, the transcriptional activity of the primary genes in MeJA biosynthesis pathway exhibited downregulated trends except for AOS and OPR and non-primary genes tend to be a little high or have fluctuation of expression. Coordinated expression of main CsHPL (TEA008699), CsAOS (TEA001041), and CsJMT (TEA015791) control the flow of lipids degradation and MeJA production. A strong infected reduction of a key lipoxygenase gene, CsLOX6 (TEA009423), in tea buds significantly reduced the level of jasmonates and expression of downstream genes, accompanied by SA, MeSA level rising, and ABA declining. We have identified a key CsLOX6, as well as established galactolipids, mainly 34:3/36:6/36:3 DGDG and 36:6/36:5/36:4 MGDG, sources for MeJA biosynthesis regulated by dynamics hormone and controlled by coordinated expressed CsHPL (TEA008699), CsAOS (TEA001041), and CsJMT (TEA015791). Our findings provide a theoretical basis for breeding high-quality black tea and offer valuable insights for improving processing methods.

8.
Food Res Int ; 175: 113685, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128978

RESUMEN

The effect of Haematococcus pluvialis (HP) (0.25∼1.25 %) as a colorant during high moisture extrusion (50 %) on the texture and microstructural properties of soy protein-based high moisture meat analogs (HMMA) was evaluated. Furthermore, the stability of HP-induced meat like color of the HMMA as a function of light exposure, freeze/thawing, frozen storage and cooking temperature and duration was investigated. The addition of HP reduced the elasticity of HMMA but enhanced its hardness, chewiness, and resilience. HP addition at low levels promoted the flexible and disordered regions within the protein secondary structure while excessive HP addition was unfavorable for protein cross-linking. The optimal degree of texturization was achieved with 0.75 % HP. Sensory evaluations revealed that HMMA with 1 %HP had a color similar to fresh beef sirloin, while HMMA with 0.25 % HP had a color closer to fresh pork loin. Light exposure induced the greatest color loss of the meat analogs compared with the cooking and frozen storage. The a* value of HMMA containing 1.25 % HP decreased by 30 % during the 14 days of light exposure. Frozen storage at darkness efficiently preserved the meat-like color of the extrudates. Overall, HP was found as promising colorant for HMMA production but the storage condition of the extrudates should be carefully optimized.


Asunto(s)
Sustitutos de la Carne , Carne , Animales , Bovinos , Carne/análisis , Culinaria , Congelación
9.
Biochem Biophys Res Commun ; 442(3-4): 153-8, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24269810

RESUMEN

In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality.


Asunto(s)
Celulosa/biosíntesis , Corchorus/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/biosíntesis , Celulosa/análisis , Clonación Molecular , Corchorus/química , Corchorus/genética , ADN Complementario/genética , Lignina/análisis , Lignina/biosíntesis , Filogenia , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/clasificación , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
10.
Synth Syst Biotechnol ; 8(4): 565-577, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691767

RESUMEN

Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.

11.
J Colloid Interface Sci ; 606(Pt 2): 1101-1110, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500149

RESUMEN

Conversion anode materials such as Mn3O4 draw much attention due to their considerable theoretical capacity for lithium-ion batteries (LIBs). However, poor conductivity, slow solid-state Li-ion diffusion, and huge volume expansion of the active materials during charge/discharge lead to unsatisfied electrochemical performance. Despite several strategies like nanocrystallization, fabricating hierarchical nanostructures, and introducing a matrix are valid to address these crucial issues, the achieved electrochemical performance still needs to be further enhanced. What is worse, the matrix with less or no Li-ion storage activity may lower the achieved capacity of the electrodes. Herein, ultra-thin CuMnO2 nanosheets with the thickness of 5-8 nm were evaluated for LIBs. The ultra-thin sheet-like nanostructure offers sufficient contact areas with electrolyte and shortens the Li-ion diffusion distance. Moreover, the in-situ generated Mn and Cu along with their oxides could play the role of matrix and conductive agent in turn at different stages, relieving the stress brought by volume expansion. Therefore, the as-prepared ultra-thin CuMnO2 nanosheets electrode displays a remarkable reversible capacity, long cycling stability, and outstanding rate capability (a reversible capacity of 1160.5 mAh g-1 at 0.1A g-1 was retained after 100 cycles with a capacity retention of 95.1 %, and 717.8 mAh g-1 at 2.0 A g-1 after 400 cycles).

12.
Front Plant Sci ; 13: 879874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800609

RESUMEN

Given the rising domestic demand and increasing global prices of corn and soybean, China is looking for alternatives for these imports to produce animal fodder. Kenaf (Hibiscus cannabinus L.) has great potential as a new forage source, due to abundant proteins, phenols and flavonoids in its leaves. However, few studies have evaluated the mechanism of protein synthesis in kenaf leaves. In the current work, compared with kenaf material "L332," the percentage of crude protein content in leaves of material "Q303" increased by 6.13%; combined with transcriptome and proteome data, the kenaf samples were systematically studied to obtain mRNA-protein correlation. Then, the genes/proteins related to protein synthesis in the kenaf leaves were obtained. Moreover, this work detected mRNA expression of 20 differentially expressed genes (DEGs). Meanwhile, 20 differentially expressed proteins (DEPs) related to protein synthesis were performed parallel reaction monitoring. Fructose-1,6-bisphosphatase (FBP), nitrite reductase (NirA), prolyl tRNA synthase (PARS) and glycine dehydrogenase (GLDC) presented increased mRNA and protein levels within kenaf leaves with high protein content. Based on the obtained findings, FBP, NirA, PARS, and GLDC genes may exert a vital function in the protein synthesis of kenaf leaves. The results provide a new idea for further studying the potential genes affecting the quality trait of protein content in kenaf leaves and provide gene resources and a theoretical foundation for further cultivating high protein kenaf varieties.

13.
Plant Physiol Biochem ; 161: 25-35, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33561658

RESUMEN

Jute (Corchorus capsularis L.) is one of the most important sources of natural fibre. Drought is among the main factors affecting the production of jute. It is essential for drought tolerance improvement to discover the genes associated with jute development during drought stress. In this study, we analyzed the transcriptome of jute under drought stress and identified new genes involved in drought stress response. In total, 120,219 transcripts with an average length of 764 bp were obtained, these transcripts included 94,246 unigenes (average length, 622 bp). Differentially expressed genes (DEGs) were discovered in drought stress (1329), among which 903 genes showed up-regulated expression, while 426 genes showed down-regulated expression. GO enrichment analyses indicated most of the enriched biological pathways were biosynthesis pathways of organic ring compounds and cellular nitrogen compounds. KEGG enrichment analyses indicated 573 DEGs were involved in 157 metabolic pathways. RT-qPCR experiments indicated that the expression trends were consistent with the results of the high-throughput sequencing. Over-expression of no apical meristem (NAM) -2-like gene increased drought tolerance and knockdown plants were drought sensitive. It has expression peaks after 6 h of drought stress and regulate 3-ketoacyl-CoA synthase gene expression. Yeast-2-Hybrid assays validated the physical interaction between NAM-2-like protein and KCS. The results provide relatively comprehensive information regarding genes and metabolic pathways that lays the foundation for the breeding of drought-resistant varieties, and represent the first identification of NAM-2-like gene and provides new insight into the regulatory network of drought tolerance in Corchorus capsularis L.


Asunto(s)
Corchorus , Vías Biosintéticas , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estrés Fisiológico , Transcriptoma
14.
Protoplasma ; 258(2): 337-345, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33079225

RESUMEN

Drought is the main factor that significantly affects plant growth and has devastating effects on crop production of jute. NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been shown to play many important roles in regulating developmental processes and abiotic stress resistance. In this study, a NAC transcription factor, CcNAC1, was cloned and characterized its function in jute. RT-qPCR analysis showed that CcNAC1 expression peaks after 8 h of drought stress. CcNAC1 overexpression and knockdown plants were created by Agrobacterium-mediated genetic transformation. PCR and southern hybridization results indicate that the CcNAC1 gene was integrated into the genome of jute. Overexpression of the CcNAC1 gene sped up the plant growth, promoted early flowering, and increased drought tolerance compared to the control plants. 3-Ketoacyl-CoA synthase (KCS) gene expression level increased significantly in the CcNAC1-overexpression plants and decreased in knockdown plants, which showed that CcNAC1 transcription factor regulated KCS gene expression. Yeast-2-Hybrid (Y2H) assays validated the physical interaction between CcNAC1 and KCS. The results provide relatively comprehensive information on the molecular mechanisms of CcNAC1 gene underlying the regulation of plant growth and drought stress resistance, and indicate that CcNAC1 acts as a positive regulator in drought tolerance in jute (Corchorus capsularis L.).


Asunto(s)
Corchorus/química , Flores/química , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
15.
Food Res Int ; 137: 109677, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233254

RESUMEN

Plucked tea leaves can be processed into black tea (Camellia sinensis), which is rich in health-promoting molecules, including flavonoid antioxidants. During black tea processing, theaflavins (TFs) and thearubigins (TRs) are generated via the successive oxidation of catechins by endogenous polyphenol oxidase (PPO)- or peroxidase (POD)-mediated reactions. This process must be well controlled to achieve the proper TF/TR ratio, which is an important quality parameter of the tea beverage. However, little is known about the POD/PPO catalyzed TF formation process at the molecular genetic level. Here, we identified and characterized the POD genes responsible for TF production in tea. Genome-wide analysis of POD/PPO family genes, metabolite profiling, and expression analysis of PPO/POD genes in tea leaves enabled us to select several PPO/POD genes potentially involved in TF production. Differential gene expression in plant tissues and enzyme activity in several tea varieties traditionally used for processing of various beverage types indicate that black tea processing primarily depends on PPO/POD activity. Among these POD/PPO genes, the POD CsGPX3 is involved in the generation of TFs during black tea processing. The capacity of PPO/POD-catalysed TF production is potentially used for controlling catechin oxidation during black tea processing and could be used to create molecular markers for breeding of tea plant varieties suitable for the production of high-quality black tea beverages.


Asunto(s)
Camellia sinensis , Catequina , Antioxidantes , Biflavonoides , Camellia sinensis/genética , Catequina/análisis , Peroxidasa , Fitomejoramiento ,
16.
J Agric Food Chem ; 68(11): 3528-3538, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32129069

RESUMEN

Theaflavins (TFs) are generated by endogenous polyphenol oxidase (PPO)- and peroxidase (POD)-catalyzed catechins oxidation during black tea processing, which needs to be well-controlled to obtain a proper TFs/thearubigins (TRs) ratio for better quality. Not all leaves from any tea plant cultivars or varieties are suitable for making high-quality black teas, regardless of the processing techniques. The mechanisms underlying TFs formation and the main factors determining the tea leaf processing suitability are not fully understood. We here integrated transcriptome and metabolite profiling of tea leaves to unveil how enzymes or metabolites in leaves are changed during black tea processing. The information enabled us to identify several PPO and POD genes potentially involved in tea processing for TF production. We characterized a POD gene, whose recombinant enzyme showed TF creation activity. The capacity for POD-catalyzed TF production could be used as a molecular marker for breeding tea plant varieties suitable for high-quality black tea production.


Asunto(s)
Biflavonoides , Catequina , Biflavonoides/análisis , Catequina/análisis , Peroxidasas , Fitomejoramiento , Polifenoles , , Transcriptoma
17.
Biotechnol Biofuels ; 12: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622651

RESUMEN

BACKGROUND: Soybean oil constitutes an important source of vegetable oil and biofuel. However, high temperature and humidity adversely impacts soybean seed development, yield, and quality during plant development and after harvest. Genetic improvement of soybean tolerance to stress environments is highly desirable. RESULTS: Transgenic soybean lines with knockdown of phospholipase Dα1 (PLDα1KD) were generated to study PLDα1's effects on lipid metabolism and seed vigor under high temperature and humidity conditions. Under such stress, as compared with normal growth conditions, PLDα1KD lines showed an attenuated stress-induced deterioration during soybean seed development, which was associated with elevated expression of reactive oxygen species-scavenging genes when compared with wild-type control. The developing seeds of PLDα1KD had higher levels of unsaturation in triacylglycerol (TAG) and major membrane phospholipids, but lower levels of phosphatidic acid and lysophospholipids compared with control cultivar. Lipid metabolite and gene expression profiling indicates that the increased unsaturation on phosphatidylcholine (PC) and enhanced conversion between PC and diacylglycerol (DAG) by PC:DAG acyltransferase underlie a basis for increased TAG unsaturation in PLDα1KD seeds. Meanwhile, the turnover of PC and phosphatidylethanolamine (PE) into lysoPC and lysoPE was suppressed in PLDα1KD seeds under high temperature and humidity conditions. PLDα1KD developing seeds suffered lighter oxidative stresses than did wild-type developing seeds in the stressful environments. PLDα1KD seeds contain higher oil contents and maintained higher germination rates than the wild-type seeds. CONCLUSIONS: The study provides insights into the roles of PLDα1 in developing soybean seeds under high temperature and humidity stress. PLDα1KD decreases pre-harvest deterioration and enhances acyl editing in phospholipids and TAGs. The results indicate a way towards improving production of quality soybean seeds as foods and biofuels under increasing environmental stress.

18.
Front Plant Sci ; 8: 1604, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979275

RESUMEN

Soybean is an important oilseed crop and major dietary protein resource, yet the molecular processes and regulatory mechanisms involved in biosynthesis of seed storage substances are not fully understood. The B3 domain transcription factor (TF) LEC2 essentially regulates embryo development and seed maturation in other plants, but is not functionally characterized in soybean. Here, we characterize the function of a soybean LEC2 homolog, GmLEC2a, in regulating carbohydrate catabolism, triacylglycerol (TAG) biosynthesis, and seed development. The experimental analysis showed that GmLEC2a complemented Arabidopsis atlec2 mutant defects in seedling development and TAG accumulation. Over-expression of GmLEC2a in Arabidopsis seeds increased the TAG contents by 34% and the composition of long chain fatty acids by 4% relative to the control seeds. Transcriptome analysis showed that ectopic expression of GmLEC2a in soybean hairy roots up-regulated several sets of downstream TF genes GmLEC1, GmFUS3, GmABI3, GmDof11 and GmWRI1 that regulate the seed development and production of seed storage substances. GmLEC2a regulated the lipid transporter genes and oil body protein gene OLEOSIN (OLE1). The genes involved in carbohydrate biosynthesis and storage, such as sucrose synthesis, and catabolism of TAG, such as lipases in GmLEC2a hairy roots were down-regulated. GmLEC2a targeted metabolic genes for seed protein in soybean.

19.
Sci Rep ; 6: 28541, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345221

RESUMEN

Diacylglycerol acyltransferases (DGATs) play a key role in plant triacylglycerol (TAG) biosynthesis. Two type 1 and 2 DGATs from soybean were characterized for their functions in TAG biosynthesis and physiological roles. GmDGAT1A is highly expressed in seeds while GmDGAT2D is mainly expressed in flower tissues. They showed different expression patterns in response to biotic and abiotic stresses. GmDGAT2D was up-regulated by cold and heat stress and ABA signaling, and repressed by insect biting and jasmonate, whereas GmDGAT1A show fewer responses. Both GmDGAT1A and GmDGAT2D were localized to the endoplasmic reticulum and complemented the TAG deficiency of a yeast mutant H1246. GmDGAT2D-transgenic hairy roots synthesized more 18:2- or 18:1-TAG, whereas GmDGAT1A prefers to use 18:3-acyl CoA for TAG synthesis. Overexpression of both GmDGATs in Arabidopsis seeds enhanced the TAG production; GmDGAT2D promoted 18:2-TAG in wild-type but enhanced 18:1-TAG production in rod1 mutant seeds, with a decreased 18:3-TAG. However, GmDGAT1A enhanced 18:3-TAG and reduced 20:1-TAG contents. The different substrate preferences of two DGATs may confer diverse fatty acid profiles in soybean oils. While GmDGAT1A may play a role in usual seed TAG production and GmDGAT2D is also involved in usual TAG biosynthesis in other tissues in responses to environmental and hormonal cues.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Glycine max/metabolismo , Hormonas/metabolismo , Estrés Fisiológico/fisiología , Triglicéridos/metabolismo , Acilcoenzima A/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Semillas/metabolismo , Aceite de Soja/metabolismo
20.
Prog Lipid Res ; 62: 55-74, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26783886

RESUMEN

Phospholipases D (PLD) and C (PLC) hydrolyze the phosphodiesteric linkages of the head group of membrane phospholipids. PLDs and PLCs in plants occur in different forms: the calcium-dependent phospholipid binding domain-containing PLDs (C2-PLDs), the plekstrin homology and phox homology domain-containing PLDs (PX/PH-PLDs), phosphoinositide-specific PLC (PI-PLC), and non-specific PLC (NPC). They differ in structures, substrate selectivities, cofactor requirements, and/or reaction conditions. These enzymes and their reaction products, such as phosphatidic acid (PA), diacylglycerol (DAG), and inositol polyphosphates, play important, multifaceted roles in plant response to abiotic and biotic stresses. Here, we review biochemical properties, cellular effects, and physiological functions of PLDs and PLCs, particularly in the context of their roles in stress response along with advances made on the role of PA and DAG in cell signaling in plants. The mechanism of actions, including those common and distinguishable among different PLDs and PLCs, will also be discussed.


Asunto(s)
Fosfolipasa D/metabolismo , Plantas/enzimología , Fosfolipasas de Tipo C/metabolismo , Diglicéridos/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA