Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chemistry ; 29(25): e202202716, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36806292

RESUMEN

Plasmonic photocatalysis for CO2 reduction is attracting increasing attention due to appealing properties and great potential for real applications. In this review, the fundamentals of plasmonic photocatalysis and the most recent developments regarding its application in driving CO2 reduction are reported. Firstly, we present the review on the mechanism of plasmonic photocatalytic CO2 reduction, the energy transfer of plasmon, and the CO2 reduction process on the catalyst surface. Then, the modulation on the plasmonic nanostructures and also the semiconductor counterpart to regulate CO2 photoreduction is discussed. Next, the influence of the core-shell structure and the interface between the plasmonic metal and semiconductor on the CO2 photoreduction performance is also outlined. In addition, the latest progress on the emerging direction regarding the plasmonic photocatalysis for methane dry reforming with CO2 is especially emphasized. Finally, a summary on the challenges and prospects of this promising field are provided.

2.
Langmuir ; 39(49): 18031-18042, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039553

RESUMEN

Obviously, the dispersion of nanocatalytic materials has significant influence on their catalytic performance. In this study, an evaluation method for the dispersion of nanomaterials was established according to the different solid UV absorptions of different substances by taking the dispersion of nanocopper oxide (nano-CuO) in superfine ammonium perchlorate (AP) as an example. The nano-CuO/superfine AP composites with different nano-CuO dispersions can be obtained by changing the process parameters, such as varying the grinding method, the grinding strength, and the grinding time. Three replicate experiments were carried out for different composites to derive the average values of absorbance at 212 nm, and the dispersion of nano-CuO in superfine AP was calculated using the difference equation, as the solid UV curves at 210-214 nm were almost identical for each sample, especially at 212 nm. The properties of different samples were tested by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and thermogravimetry-mass spectrometry (TG-MS). The results show that the particle size and structure of superfine AP in the composites prepared by different methods were not changed. The XRD and IR techniques in this study were unable to characterize the dispersion of nano-CuO in the composites due to its low content. The dispersion of nano-CuO in the nano-CuO/superfine AP composites was significantly enhanced with the increase of grinding strength and grinding time, and the dispersion of nano-CuO was positively correlated with its catalytic performance, which means that the thermal decomposition performance of different composites improved with the increasing dispersion of nano-CuO. Highly dispersed nano-CuO exhibited a significant catalytic effect on superfine AP in TG-MS. The above conclusions demonstrate the accuracy of the difference equation for evaluating the dispersion of nanomaterials based on solid UV curves, which is expected to be used extensively in evaluating the dispersion of nanocatalytic materials in energetic materials.

3.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615616

RESUMEN

Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects. This review describes the research progress on self-healing binders for ECMs. The structural designs of these strategies to manipulate macro-molecular and/or supramolecular polymers are discussed in detail, and then the implementation of these strategies on ECMs is discussed. However, the reasonable configuration of robust microstructures and effective dynamic exchange are still challenges. Therefore, the prospects for the development of self-healing binders for ECMs are proposed. These critical insights are emphasized to guide the research on developing novel self-healing binders for ECMs in the future.

4.
Langmuir ; 38(49): 15234-15244, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36453942

RESUMEN

As a new type of carbon material, graphene oxide aerogel (GA) is widely used in catalysis due to its porous structure, high-efficiency adsorption, and superb conductivity. In this study, GA was prepared into a dense coating layer surrounding ZnCo2O4/ZnO particles to form a composite GA-ZnCo2O4/ZnO by means of a hydrothermal, blast drying, and vacuum-freeze-drying approach applied to catalyze the thermal decomposition of ammonium perchlorate (AP). The physicochemical properties of the obtained GA-ZnCo2O4/ZnO were characterized by different analytical methods. Scanning electron microscopy (SEM) analysis exhibited that GA is coated on the surface of ZnCo2O4/ZnO, forming a dense layer. Brunner Emmet Teller (BET) measurement results show that GA-ZnCo2O4/ZnO has a smooth macropore distribution curve and a larger specific surface area. Moreover, The catalytic effect investigation on AP with GA-ZnCo2O4/ZnO: the high temperature decomposition (HTD) peak temperature of AP in the presence of 5 wt % GA-ZnCo2O4/ZnO was reduced from 441 to 294 °C, and the exotherm of AP was expanded from 205 to 1275 J/g at a heating rate of 15 °C/min. Through the calculation, GA-ZnCo2O4/ZnO makes the activation energy and Gibbs free energy of the AP pyrolysis lower so that the reaction is easier to occur. Thermogravimetric-mass (TG-MS) spectrometry revealed that during thermal decomposition of AP, GA-ZnCo2O4/ZnO leveraged the synergistic catalysis of ZnCo2O4/ZnO and GA that boosted the flow of electrons from ClO4- to O2 and increased the absorption of the gas product to accelerate the AP pyrolysis. These results provided a facile strategy to prepare GA-based composite catalysts with extraordinary application prospects in the domain of solid propellants.

5.
J Acoust Soc Am ; 151(5): 3164, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35649944

RESUMEN

The angular resolution has always been a concern in the underwater direction of arrival (DOA) estimation. The resolution of the uniform linear array will worsen if the array aperture decreases. When the element spacing is determined, increasing the number of array elements (NAE) can improve the resolution. However, the NAE cannot be greatly increased in practical applications. To address this problem, we propose an array aperture extension method. For this method, we design an optimization algorithm to reconstruct the covariance matrix of the extended array by using that of the original array. Moreover, to make the extended array resemble the actual array, the reconstructed covariance matrix is constrained with a pure signal covariance matrix. The solution method of the optimization algorithm is described in detail. The function of this method is to improve the array aperture by increasing the virtual array elements without changing the element spacing. Therefore, when the array elements are insufficient, this method helps to improve the DOA estimation performance, such as the estimation precision and resolution probability of dual targets. Experiments including simulations and real lake experiments are implemented to validate the effectiveness of the proposed method.

6.
J Am Chem Soc ; 141(39): 15498-15503, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31509398

RESUMEN

Geometric structures are commonly encountered in natural and designed systems. However, the bottom-up fabrication of regular geometric assemblies with precise dimensional control, especially from soft materials, poses an outstanding challenge in contemporary materials science and chemistry. Herein, we present a general method for the preparation of colloidally stable, hexagonal platelets via the formation of crystalline inclusion complexes of tris-o-phenylenedioxycyclotriphosphazene and block copolymers bearing interactive blocks. Dictated by the screw dislocation growth of inclusion complexes, uniform hexagonal platelets with precisely controllable dimensions can be prepared. This supramolecular assembly approach is further utilized to produce concentric hexagonal platelets via stepwise seeded growth from various inclusion complexes.


Asunto(s)
Cristalización/métodos , Polímeros/química , Sistemas de Liberación de Medicamentos , Microscopía Electrónica de Transmisión , Propiedades de Superficie
7.
Nanotechnology ; 31(8): 085708, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675746

RESUMEN

3D flower-like Fe3S4 microspheres and quasi-sphere Fe3S4-RGO hybrid-architectures were successfully fabricated by a facile template-free hydrothermal method. The results of morphology revealed that the single Fe3S4 was composed of many nanoflakes and the Fe3S4-RGO composites mainly distributed together into a ball up and down the RGO sheet. The electromagnetic parameters of the single Fe3S4 and Fe3S4-RGO composites could be controlled by adjusting different filler loading and the addition of different GO to achieve impedance matching. Both the single Fe3S4 and Fe3S4-RGO composites exhibited an excellent EM absorption ability. The minimum reflection loss (RL) of the single Fe3S4 with 50% filler loading could achieve -66.87 dB at 10.57 GHz for the thickness of 2.2 mm, and the absorption bandwidth (RL < -10 dB) could reach 3.49 GHz. For the Fe3S4-RGO composites, the minimum RL of FSR-1 could be -40.25 dB at 9.67 GHz with the thickness of 2.0 mm. In addition, the effective absorption bandwidth of FSR-2 could reach 3.85 GHz at only 1.45 mm and the minimum RL was -29.25 dB at 14.24 GHz. Consequently, the single Fe3S4 and Fe3S4-RGO composites are promising materials as a high performance and adjustable EM wave absorber.

8.
Org Biomol Chem ; 16(40): 7488-7497, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30272759

RESUMEN

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was reported to participate in the development of a variety of tumors. BC15 is a DNA aptamer targeting hnRNP A1. Firstly, through sequence truncation, we identified 31-mer sequence BC15-31 as the core sequence of BC15 with a strong binding affinity and high selectivity to the hnRNP A1 protein. Isothymidine (isoT) modification was then applied for the structural optimization of BC15-31, systematic modification and biological evaluation were carried out. Incorporation of isoT in the 1,3 sites at the 5'-end of BC15-31 can significantly enhance the protein affinity. Chemical modifications close to the 3'-end can greatly improve the stability of the aptamer. Furthermore, BC15-31 modified with isoT at both the 5'-end and 3'-end displayed an additive effect with enhanced bioactivity and stability at the same time. Our study strategy on BC15 provides a useful guideline for chemical modification and optimization of the aptamer for further clinical application.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Timidina/química , Células A549 , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/farmacología , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Sensors (Basel) ; 18(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380786

RESUMEN

Depth discrimination is a key procedure in acoustic detection or target classification for low-frequency underwater sources. Conventional depth-discrimination methods use a vertical line array, which has disadvantage of poor mobility due to the size of the sensor array. In this paper, we propose a depth-discrimination method for low-frequency sources using a horizontal line array (HLA) of acoustic vector sensors based on mode extraction. First, we establish linear equations related to the modal amplitudes based on modal beamforming in the vector mode space. Second, we solve the linear equations by introducing the total least square algorithm and estimate modal amplitudes. Third, we select the power percentage of the low-order modes as the decision metric and construct testing hypotheses based on the modal amplitude estimation. Compared with a scalar sensor, a vector sensor improves the depth discrimination, because the mode weights are more appropriate for doing so. The presented linear equations and the solution algorithm allow the method to maintain good performance even using a relatively short HLA. The constructed testing hypotheses are highly robust against mismatched environments. Note that the method is not appropriate for the winter typical sound speed waveguide, because the characteristics of the modes differ from those in downward-refracting sound speed waveguide. Robustness analysis and simulation results validate the effectiveness of the proposed method.

10.
Sensors (Basel) ; 18(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326658

RESUMEN

In this paper, we study the problem of the joint detection and direction-of-arrival (DOA) tracking of a single moving source which can randomly appear or disappear from the surveillance volume. Firstly, the Bernoulli random finite set (RFS) is employed to characterize the randomness of the state process, i.e., the dynamics of the source motion and the source appearance. To increase the performance of the detection and DOA tracking in low signal-to-noise ratio (SNR) scenarios, the measurements are obtained directly from an array of sensors and allow multiple snapshots. A track-before-detect (TBD) Bernoulli filter is proposed for tracking a randomly on/off switching single dynamic system. Secondly, since the variances of the stochastic signal and measurement noise are unknown in practical applications, these nuisance parameters are marginalized by defining an uninformative prior, and the likelihood function is compensated by using the information theoretic criteria. The simulation results demonstrate the performance of the filter.

11.
Ultrason Sonochem ; 104: 106827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412678

RESUMEN

It is of great significance to prepare liners with excellent inhibition of energetic plasticizer migration and gas barrier properties. Here, we have successfully prepared magnetic iron oxide decorated reduced-graphene-oxide nanosheets (MRGO) by using ultrasound-assisted method. The obtained MRGO nanosheet-fillers were filled into hydroxyl-terminated polybutadiene (HTPB) which was exposed to a magnetic field (200 mT) to achieve ordered orientation of MRGO in the HTPB matrix (Ordered MRGO/HTPB). The laser confocal microscopy demonstrates that MRGO exhibit ordered orientation structure in HTPB matrix with good dispersion, which renders the HTPB composite liners exhibiting high gas and plasticizer barrier capability, with a reduction of 18.9 % in water vapor permeability and a decrease of 14.1 % in dibutyl phthalate (DBP) migration equilibrium concentration as compared with those of random MRGO embedded HTPB composite liners (Random MRGO/HTPB). Moreover, a theoretical model accounting for such enhanced gas/plasticizer barrier performance of HTPB due to the implantation of order aligned MRGO was established, which shows that the effective diffusion pathways of plasticizer/gas for liner penetration would be significantly enhanced when the MRGO nanosheets are oriented within the HTPB matrix. This work provides an effective and facile strategy toward the design and development of composite liners with high plasticizer/gas barrier performance for industrial applications.

12.
Nanomaterials (Basel) ; 13(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985981

RESUMEN

Mechanical properties and reprocessing properties are of great significance to the serviceability and recyclability of energetic composites. However, the mechanical robustness of mechanical properties and dynamic adaptability related to reprocessing properties are inherent contradictions, which are difficult to optimize at the same time. This paper proposed a novel molecular strategy. Multiple hydrogen bonds derived from acyl semicarbazides could construct dense hydrogen bonding arrays, strengthening physical cross-linking networks. The zigzag structure was used to break the regular arrangement formed by the tight hydrogen bonding arrays, so as to improve the dynamic adaptability of the polymer networks. The disulfide exchange reaction further excited the polymer chains to form a new "topological entanglement", thus improving the reprocessing performance. The designed binder (D2000-ADH-SS) and nano-Al were prepared as energetic composites. Compared with the commercial binder, D2000-ADH-SS simultaneously optimized the strength and toughness of energetic composites. Due to the excellent dynamic adaptability of the binder, the tensile strength and toughness of the energetic composites still maintained the initial values, 96.69% and 92.89%, respectively, even after three hot-pressing cycles. The proposed design strategy provides ideas for the design and preparation of recyclable composites and is expected to promote the future application in energetic composites.

13.
Dalton Trans ; 52(7): 2027-2035, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692030

RESUMEN

Seeking new methods to modulate the structure of metal-organic frameworks (MOFs) for diverse applications, particularly for water splitting, is intensively urgent but challenging. Herein, a simple hydrothermal method employing HCl as the modulator is developed to synthesize a series of NiFe-MOF-n/NF. The amount of HCl modulator not only changes the elemental composition and crystal structure but also modulates the electronic structure of NiFe-MOF-n/NF, thus improving intrinsic activity. Owing to the synergetic interactions between Ni and Fe atoms, free-standing feature, the optimized NiFe-MOF-2/NF yields excellent OER activity with overpotentials of 209 and 260 mV at 10 and 100 mA cm-2, respectively, a small Tafel slope of 36.4 mV dec-1 and excellent OER stability for 24 h at 100 mA cm-2 in 1 M KOH. This demonstrates that NiFe-MOF-2/NF are in situ converted into metal oxide/oxyhydroxide after OER, thereby serving as the real active sites. This study offers a feasible way to fabricate low-cost, efficient MOF-based electrocatalysts.

14.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050345

RESUMEN

The excessive migration of small molecular plasticizers in solid propellants may lead to debonding and changes in combustion characteristics, affecting the safety of solid rocket motors. Herein, two functionalized graphene oxides (GO) were used to enhance the anti-migration performance of EPDM insulation. GO, 3-Aminopropyltriethoxysilane-modified GO (AGO) and octadecylamine-modified GO (HGO) were filled into EPDM to fabricate EPDM insulation. The anti-migration properties and migration kinetics of EPDM insulations were studied using immersion tests. Moreover, the mechanical properties, including the tensile properties, crosslink density, hardness, and aging resistance of different EPDM insulations, were also explored. Compared with GO, AGO, and HGO obviously enhanced the anti-migration and mechanical properties of the EPDM insulations. This study shows that the anti-migration performance of EPDM insulation can be enhanced by functionalized GO.

15.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139898

RESUMEN

Ultraviolet (UV)-curing technology as a photopolymerization technology has received widespread attention due to its advantages of high efficiency, wide adaptability, and environmental friendliness. Ultraviolet-based 3D printing technology has been widely used in the printing of thermosetting materials, but the permanent covalent cross-linked networks of thermosetting materials which are used in this method make it hard to recover the damage caused by the printing process through reprocessing, which reduces the service life of the material. Therefore, introducing dynamic bonds into UV-curable polymer materials might be a brilliant choice which can enable the material to conduct self-healing, and thus meet the needs of practical applications. The present review first introduces photosensitive resins utilizing dynamic bonds, followed by a summary of various types of dynamic bonds approaches. We also analyze the advantages/disadvantages of diverse UV-curable self-healing polymers with different polymeric structures, and outline future development trends in this field.

16.
Dalton Trans ; 52(36): 12796-12807, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622218

RESUMEN

Recently, the widespread use of nanocatalytic materials has contributed to an enormous improvement in the performance of energetic materials, especially, highly dispersed nanomaterials. However, the lack of quantitative methods for analyzing the dispersion of nanomaterials limits their further widespread use. Although various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. are used to analyze the relative dispersion of nanomaterials, it is not possible to quantitatively analyze their dispersion. Therefore, there has been an effort to develop new methods for the quantitative analysis of nanocatalytic materials. Fortunately, we were able to analyze the dispersion of nanocatalytic materials using the difference in their UV absorbance. More importantly, we established the corresponding difference equation to quantify the dispersion of nanocatalytic materials, which is capable of quantifying the dispersion of nano-Fe2O3 in nano-Fe2O3-ultrafine AP composites. The accuracy of the difference equation was verified using a variety of techniques and the desired results were obtained. Based on the above conclusions, the quantitative analysis method for the dispersion of nanomaterials that we established is expected to be widely used and promote the development of energetic materials.

17.
Front Cell Dev Biol ; 11: 1124374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910142

RESUMEN

Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently "on the attack" in the arms race dynamic.

18.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904465

RESUMEN

It is very important to develop a new method of preparing high-performance liquid silicone rubber-reinforcing filler. Herein, the hydrophilic surface of silica (SiO2) particles was modified by a vinyl silazane coupling agent to prepare a new type of hydrophobic reinforcing filler. The structures and properties of modified SiO2 particles were confirmed using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), specific surface area and particle size distribution and thermogravimetric analysis (TGA), the results of which demonstrated that the aggregation of hydrophobic particles is greatly reduced. Additionally, the effects of the vinyl-modified SiO2 particle (f-SiO2) content on the dispersibility, rheology, and thermal and mechanical properties of liquid silicone rubber (SR) composites were studied for application toward high-performance SR matrix. The results showed that the f-SiO2/SR composites possessed low viscosity and higher thermal stability, conductivity, and mechanical strength than of SiO2/SR composites. We believe that this study will provide ideas for the preparation of high-performance liquid silicone rubber with low viscosity.

19.
ACS Omega ; 8(18): 16251-16262, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179598

RESUMEN

To eliminate internal defects of grains developed during melt-cast charging, the formation mechanism and the trend of crystal morphology of internal defects of 2,4,6-trinitrotoluene and 2,4-dinitroanisole-based melt-cast explosives under different process conditions were simulated. The effects of solidification treatment on melt-cast explosive molding quality were investigated by combining pressurized feeding, head insulation, and water bath cooling. The single pressurized treatment technology results showed that grains were exposed to layer-by-layer solidification from outside to inside, resulting in V-shaped shrink areas of the contract cavity in the core. The defect area was proportional to the treatment temperature. However, the combination of treatment technologies, such as head insulation and water bath cooling, promoted longitudinal gradient solidification of the explosive and controllable migration of its internal defects. Moreover, the combined treatment technologies effectively improved the heat transfer efficiency of the explosive with the help of a water bath to reduce the solidification time, thus achieving highly efficient equal-material manufacturing of microdefect or zero-defect grains.

20.
ACS Omega ; 7(20): 17098-17107, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647447

RESUMEN

A near-infrared (NIR) spectrometer was used to test the double-base absorbent powder sample and to quantitatively analyze the contents of each component as well as their dispersion uniformity to establish a rapid quantitative test method for blending uniformity of modified double-base (MDB) propellant components. First, the quantitative calibration models of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were constructed based on sample testing, and the RDX model's correlation coefficient was 0.9929. Then, during the blending process, NIR spectra were continually collected. For the original spectra of samples, the blend uniformity was assessed using the coefficient of moving block standard deviation (MBSD). After 160 min, the sample's MBSD value had reached a steady state of less than 0.003, indicating that the sample's components were distributed uniformly. The findings reveal that NIR spectroscopy can be used to verify the blending uniformity of MDB propellant components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA