Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267547

RESUMEN

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sepsis , Animales , Sepsis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Ratas , Administración Intravenosa
2.
Acta Pharmacol Sin ; 44(2): 321-331, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35655094

RESUMEN

Metabolic cardiomyopathy (MC) is characterized by intracellular lipid accumulation and utilizing fatty acids as a foremost energy source, thereby leading to excess oxidative stress and mitochondrial dysfunction. There is no effective therapy available yet. In this study we investigated whether defective mitophagy contributed to MC and whether urolithin A (UA), a naturally occurring microflora-derived metabolite, could protect against MC in experimental obese mice. Mice were fed high fat diet for 20 weeks to establish a diet-induced obese model. We showed that mitochondrial autophagy or mitophagy was significantly downregulated in the heart of experimental obese mice. UA (50 mg·kg-1·d-1, for 4 weeks) markedly activated mitophagy and ameliorated MC in obese mice by gavage. In PA-challenged H9C2 cardiomyocytes, UA (5 µM) significantly increased autophagosomes and decreased autolysosomes. Furthermore, UA administration rescued PINK1/Parkin-dependent mitophagy and relieved mitochondrial defects in the heart of obese mice, which led to improving cardiac diastolic function and ameliorating cardiac remodelling. In PA-challenged primarily isolated cardiomyocytes, both application of mitophagy inhibitor Mdivi-1 (15 µM) and silencing of mitophagy gene Parkin blunted the myocardial protective effect of UA. In summary, our data suggest that restoration of mitophagy with UA ameliorates symptoms of MC, which highlights a therapeutic potential of UA in the treatment of MC.


Asunto(s)
Cardiomiopatías , Mitofagia , Ratones , Animales , Ratones Obesos , Proteínas Quinasas/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Pharmacology ; 108(1): 47-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36423586

RESUMEN

INTRODUCTION: Luteolin is a flavonoid polyphenolic compound exerting broad pharmacological and medicinal properties. Diabetes-related obesity increases the total blood volume and cardiac output and may increase the myocardial hypertrophy progression. However, the mechanism of luteolin in diabetic myocardial hypertrophy remains uncertain. Therefore, this study aimed to evaluate whether luteolin improved diabetic cardiomyopathy (DCM) by inhibiting the proteasome activity. METHODS: Cardiomyopathy was induced in streptozotocin-treated diabetes mellitus (DM) and db/db mice. Luteolin (20 mg kg-1·day-1) was administrated via gavage for 12 weeks. In vitro, high glucose and high insulin (HGI, glucose at 25.5 mM and insulin at 0.1 µM) inducing primary neonatal rat cardiomyocytes (NRCMs) were treated with or without luteolin for 48 h. Echocardiography, reverse transcription quantitative polymerase chain reaction, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS: Luteolin administration significantly prevented the onset of cardiac hypertrophy, fibrosis, and dysfunction in type 1 DM (T1DM) and type 2 DM (T2DM). Compared with DCM mice, luteolin groups showed lower serum triglyceride and total cholesterol levels. Furthermore, luteolin attenuated HGI-induced myocardial hypertrophy and reduced atrial natriuretic factor mRNA level in NRCMs. Proteasome activities were inhibited by luteolin in vitro. Luteolin also reduces the proteasome subunit levels (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome, as well as proteasome-regulated particles (Rpt) 1 and Rpt4 levels of 19S proteasome. Furthermore, luteolin treatment increased protein kinase B (AKT) and GSK-3α/ß (inactivation of GSK-3) phosphorylation. The phosphorylation level of AMPK activity was also reversed after the treatment with luteolin in comparison with the HGI-treated group. CONCLUSION: This study indicates that luteolin protected against DCM in mice, including T1DM and T2DM, by upregulating phosphorylated protein AMPK and AKT/GSK-3 pathways while decreasing the proteasome activity. These findings suggest that luteolin may be a potential therapeutic agent for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insulinas , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3/efectos adversos , Glucógeno Sintasa Quinasa 3/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Transducción de Señal , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Insulinas/efectos adversos
4.
Acta Pharmacol Sin ; 42(10): 1587-1597, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33495518

RESUMEN

Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 µM) and zonisamide (0.3 µM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Zonisamida/uso terapéutico , Animales , Aorta Abdominal/cirugía , Apoptosis/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Masculino , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
5.
Acta Pharmacol Sin ; 42(3): 393-403, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32647341

RESUMEN

Endoplasmic reticulum stress (ER stress) plays a key role in the development of cardiac hypertrophy and diabetic cardiomyopathy (DCM). Zonisamide (ZNS) was originally developed as an antiepileptic drug. Studies have shown that ZNS suppresses ER stress-induced neuronal cell damage in the experimental models of Parkinson's disease. Herein, we investigated whether ZNS improved DCM by attenuating ER stress-induced apoptosis. C57BL/6J mice were fed with high-fat diet (HFD) and intraperitoneally injected with low-dose streptozotocin (STZ) to induce type 2 diabetes mellitus (T2DM), and then treated with ZNS (40 mg·kg-1·d-1, i.g.) for 16 weeks. We showed that ZNS administration slightly ameliorated the blood glucose levels, but significantly alleviated diabetes-induced cardiac dysfunction and hypertrophy. Furthermore, ZNS administration significantly inhibited the Bax and caspase-3 activity, upregulated Bcl-2 activity, and decreased the proportion of TUNEL-positive cells in heart tissues. We analyzed the hallmarks of ER stress in heart tissues, and revealed that ZNS administration significantly decreased the protein levels of GRP78, XBP-1s, ATF6, PERK, ATF4, and CHOP, and elevated Hrd1 protein. In high glucose (HG)-treated primary cardiomyocytes, application of ZNS (3 µM) significantly alleviated HG-induced cardiomyocyte hypertrophy and apoptosis. ZNS application also suppressed activated ER stress in HG-treated cardiomyocytes. Moreover, preapplication of the specific ER stress inducer tunicamycin (10 ng/mL) eliminated the protective effects of ZNS against HG-induced cardiac hypertrophy and ER stress-mediated apoptosis. Our findings suggest that ZNS improves the cardiac diastolic function in diabetic mice and prevents T2DM-induced cardiac hypertrophy by attenuating ER stress-mediated apoptosis.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Zonisamida/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Cardiomegalia/sangre , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/etiología , Dieta Alta en Grasa , Chaperón BiP del Retículo Endoplásmico , Corazón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 524(3): 629-635, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32029275

RESUMEN

AIMS: Endothelial progenitor cells (EPCs) are widely accepted to be applied in ischemic diseases. However, the therapeutic potency is largely impeded because of its inviability in these ischemic conditions. Autophagy is recognized to be vital in cell activity. Therefore, we explore the role and the mechanism of autophagy in ischemic EPCs. METHODS AND RESULTS: We applied 7d-cultured bone marrow EPCs to investigate the autophagy status under the oxygen and glucose deprivation (OGD) conditions in vitro, mimicking the in-vivo harsh ischemia and anoxia microenvironment. We found increased EPC apoptosis, accompanied by an impaired autophagy activation. Intriguingly, mTOR inhibitor Rapamycin was incapable to reverse this damped autophagy and EPC damage. We further found that autophagy pathway downstream Vps34-Beclin1-Atg14 complex assembly and activity were impaired in OGD conditions, and an autophagy-inducing peptide Tat-Beclin1 largely recovered the impaired complex activity and attenuated OGD-stimulated EPC injury through restoring autophagy activation. CONCLUSIONS: The present study discovered that autophagy activation is inhibited when EPCs located in the ischemia and anoxia conditions. Restoration of Vps34 complex activity obtains sufficient autophagy, thus promoting EPC survival, which will provide a potential target and advance our understanding of autophagy manipulation in stem cell transplantation.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Isquemia/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Glucosa/deficiencia , Masculino , Ratones Endogámicos C57BL , Oxígeno , Sirolimus/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Acta Pharmacol Sin ; 40(8): 1019-1028, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30792486

RESUMEN

Minocycline is a tetracycline antibiotic and has been shown to play a protective role in cerebral and myocardial ischemia/reperfusion (I/R). However, the underlying mechanism remains unclear. Herein, we investigated whether monocyte chemotactic protein-induced protein-1 (MCPIP1), a negative regulator of inflammation, was involved in the minocycline-induced cardioprotection in myocardial I/R in vivo and in vitro models. Myocardial ischemia was induced in rats by left anterior descending coronary artery occlusion for 1 h and followed by 48 h reperfusion. Minocycline was administered prior to ischemia (45 mg/kg, ip, BID, for 1 d) and over the course of reperfusion (22.5 mg/kg, ip, BID, for 2 d). Cardiac function and infarct sizes were assessed. Administration of minocycline significantly decreased the infarct size, alleviated myocardial cell damage, elevated left ventricle ejection fraction, and left ventricle fractional shortening following I/R injury along with significantly decreased pro-inflammatory cytokine IL-1ß and monocyte chemoattractant protein-1 (MCP-1) levels in heart tissue. H9c2 cardiomyocytes were subjected to oxygen glucose deprivation (OGD) followed by reoxygenation (OGD/R). Pretreatment with minocycline (1-50 µmol/L) dose-dependently increased the cell viability and inhibited OGD/R-induced expression of MCP-1 and IL-6. Furthermore, minocycline dose-dependently inhibited nuclear translocation of NF-κB p65 in H9c2 cells subjected to OGD/R. In both the in vivo and in vitro models, minocycline significantly increased MCPIP1 protein expression; knockdown of MCPIP1 with siRNA in H9c2 cells abolished all the protective effects of minocycline against OGD/R-induced injury. Our results demonstrate that minocycline alleviates myocardial I/R injury via upregulating MCPIP1, then subsequently inhibiting NF-κB activation and pro-inflammatory cytokine secretion.


Asunto(s)
Cardiotónicos/farmacología , Minociclina/farmacología , Daño por Reperfusión Miocárdica/prevención & control , FN-kappa B/antagonistas & inhibidores , Ribonucleasas/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Masculino , Ratas Sprague-Dawley , Ribonucleasas/genética , Regulación hacia Arriba
8.
Acta Pharmacol Sin ; 37(4): 530-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26838074

RESUMEN

AIM: Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. METHODS: Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. RESULTS: A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. CONCLUSION: Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Glucósidos/farmacocinética , Glicósidos/farmacocinética , Monoterpenos/farmacocinética , Paeonia/química , Adulto , Animales , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Permeabilidad de la Membrana Celular , Femenino , Glucósidos/sangre , Glucósidos/orina , Glicósidos/sangre , Glicósidos/orina , Humanos , Masculino , Monoterpenos/sangre , Monoterpenos/orina , Raíces de Plantas/química , Unión Proteica , Ratas Sprague-Dawley , Adulto Joven
9.
Acta Cardiol Sin ; 32(6): 723-730, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27899860

RESUMEN

BACKGROUND: Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. METHODS: Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. RESULTS: The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. CONCLUSIONS: Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy.

10.
Biochem Biophys Res Commun ; 457(3): 419-25, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582777

RESUMEN

Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Proteínas Hedgehog/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Cardiotónicos/metabolismo , Hipoxia de la Célula , Línea Celular , Supervivencia Celular/fisiología , Glucosa/deficiencia , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratas , Transducción de Señal
11.
J Biomater Sci Polym Ed ; 35(4): 519-534, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38265701

RESUMEN

Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.


Asunto(s)
Infecciones Bacterianas , Triclosán , Humanos , Micelas , Poliuretanos/química , Portadores de Fármacos/química , Triclosán/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Polietilenglicoles/química , Polímeros/química , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno
12.
Front Plant Sci ; 13: 1008896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544873

RESUMEN

Rapid dehydration of maize grain is one of the main characteristics of cultivar selection for mechanical grain harvest; however, the dominant driving forces and mechanisms of grain dehydration before physiological maturity remain disputable and obscure. This study compared the grain moisture content and dehydration rate of coated treatment (no surface evaporation) and control grains. Meanwhile, the xylem-mobile dye was infused from stem and cob, and its movement was observed in cob, ear-stalk and stem xylem. The development dynamics of husk, grain and cob were analyzed to determine the mechanism of grain dehydration. The results showed that, from grain formation to 5-10 days before physiological maturity, the main driving force of grain dehydration of the early and middle-maturity maize cultivars was filling, followed by surface evaporation. In the dye movement experiment, the movement of the stem-infused xylem-mobile dye through the pedicel xylem was observed during but not after the grain formation period. Moreover, the cob-infused xylem-mobile dye moved to the ear- stalk and the stem via the xylem. There was a significantly positive correlation between grain filling rate and dehydration rate from grain formation to physiological maturity. According to these results, we proposed that in the grain dehydration phase driven by filling, the surplus water in the grain flows back to the cob via the pedicel xylem, of which some flowed back to the plant via the cob and ear- stalk xylem. This provides a new theoretical basis for selecting and breeding maize cultivars suitable for mechanical grain harvesting.

13.
Front Endocrinol (Lausanne) ; 13: 921812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060950

RESUMEN

Objective: The aim of this study was to evaluate the feasibility and efficacy of percutaneous laser ablation (PLA) for patients with multifocal papillary thyroid microcarcinoma (PTMC). Materials and methods: A cohort of patients who underwent ultrasound (US)-guided PLA for primary PTMC were enrolled in this study. The patients were divided into a multifocal PTMC (multi-PTMC) group and a unifocal PTMC (uni-PTMC) group. Before PLA, conventional US and contrast-enhanced ultrasound (CEUS) were performed to evaluate the PTMC and cervical lymph nodes. The operation time, energy, power, amount of isolation liquid, and complications during PLA were recorded. Patients were followed up at 2 days, 1 month, 3 months, and 6 months, and every 6 months after that. Volume reduction rate (VRR), local tumor recurrence, and lymph node metastasis after PLA were observed. Results: The study included 12 patients with 26 PTMCs and 60 patients with 60 PTMCs. The operation time, total energy, and amount of isolation liquid in the multi-PTMC group were more than those in the uni-PTMC group (p = 0.000, 0.007, and 0.020, respectively). The mean follow-up durations in multi-PTMC and uni-PTMC groups were 19.75 ± 11.46 months (6-36 months) and 16.33 ± 10.01 months (4-40 months), with a similar VRR of the ablated lesions in the two groups. One and three cases with newly developed PTMCs were observed in the multi-PTMC group and the uni-PTMC group during follow-up, respectively. There was no regrowth of treated lesions, lymph node metastasis, or distant metastasis. At the end of the follow-up, all the ablated lesions in the two groups completely disappeared or only remained scar strips. Conclusion: PLA is a safe and effective technique for treating multifocal PTMC, which might be an alternative technique for patients who are not eligible or are unwilling to undergo surgery.


Asunto(s)
Terapia por Láser , Neoplasias de la Tiroides , Carcinoma Papilar , Estudios de Factibilidad , Humanos , Terapia por Láser/métodos , Metástasis Linfática , Poliésteres , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Ultrasonografía Intervencional
14.
J Pharm Anal ; 12(4): 664-682, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36105162

RESUMEN

XueBiJing is an intravenous five-herb injection used to treat sepsis in China. The study aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)- or liquid chromatography-ultraviolet (LC-UV)-based assay for quality evaluation of XueBiJing. Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point calibrator for monitoring the various analytes in parallel. Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition, pharmacokinetics, and pharmacodynamics. A selectivity test (for "similarity of response") was developed to identify and minimize interference by non-target constituents. Then, an intercept test was developed to fulfill "linearity through zero" for each analyte (absolute ratio of intercept to C response, <2%). Using the newly developed assays, we analyzed samples from 33 batches of XueBiJing, manufactured over three years, and found small batch-to-batch variability in contents of the marker constituents (4.1%-14.8%), except for senkyunolide I (26.5%).

15.
Clin Exp Pharmacol Physiol ; 38(11): 739-46, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21819443

RESUMEN

1. Inflammation-induced proliferation of cardiac fibroblasts plays an important role in cardiac remodelling. Pharmacological doses of exogenous glucocorticoids (GC) are the most effective therapy for inflammatory diseases. Similarly, physiological concentrations of endogenous GC have recently been shown to have anti-inflammatory effects. Therefore, the aim of the present study was to determine whether a physiological concentration of GC could inhibit pro-inflammatory cytokine-stimulated proliferation of cardiac fibroblasts and to explore the mechanisms involved. 2. Cardiac fibroblasts were isolated from adult male Sprague-Dawley rats and cell proliferation was measured using a CCK-8 kit. Western blotting was used to detect protein expression of extracellular-regulated kinase (ERK) 1/2 and nuclear factor (NF)-κB. 3. Cardiac fibroblast proliferation was significantly increased by tumour necrosis factor-α, interleukin (IL)-1ß and angiotensin II and was accompanied by upregulated protein expression of ERK1/2 and NF-κB. A physiological concentration of hydrocortisone (127 ng/mL) not only inhibited the proliferation of cardiac fibroblasts, but also suppressed activation of ERK1/2 and NF-κB. These effects of hydrocortisone were abrogated by the glucocorticoid receptor (GR) antagonist RU-486 (100 nmol/L). Furthermore, inflammation-induced cardiac fibroblast proliferation was also blocked by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (100 nmol/L) and the NF-κB inhibitor pyrrolidine dithiocarbamate (1 µmol/L). Cytokine-induced ERK1/2 phosphorylation and cyclin D1 expression were attenuated by U0126, suggesting that the ERK1/2 and NF-κB signalling pathways were involved in cardiac fibroblast proliferation. 4. In conclusion, the results of the present study indicate that a physiological concentration of hydrocortisone can inhibit inflammation-induced proliferation of cardiac fibroblasts by preventing the activation of ERK1/2 and NF-κB.


Asunto(s)
Hidrocortisona/farmacología , Mediadores de Inflamación/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miofibroblastos/metabolismo , FN-kappa B/metabolismo , Angiotensina II/metabolismo , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Hidrocortisona/fisiología , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Miocardio/citología , Miocardio/metabolismo , Miofibroblastos/citología , Miofibroblastos/efectos de los fármacos , FN-kappa B/genética , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/genética
16.
World J Clin Cases ; 9(35): 10909-10918, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-35047601

RESUMEN

BACKGROUND: Thumb polydactyly is one of the most common congenital hand deformities, and the Bilhaut-Cloquet procedure or a modified one is often used. However, controversy remains over the rare instances in which both thumbs are not of similar length or far apart in distance. AIM: To evaluate the clinical outcomes of pedicle complex tissue flap transfer in the treatment of duplicated thumbs with unequal size. METHODS: From January 2014 to December 2020, 15 patients underwent duplicated thumb reconstruction by pedicle complex tissue flap transfer at our hand surgery center. The technique was used when it was necessary to combine different tissues from both severed and preserved thumbs that were not of similar length or far apart in distance. Subjective parents' evaluations and functional outcomes (ALURRA and TATA criteria) were obtained. The alignment deviation, instability, range of motion (percent of opposite thumb) of the interphalangeal and metacarpophalangeal joints, and the aesthetic aspects, including circumference, length, nail size, and nail deformity, were used to assess the clinical outcomes. RESULTS: The average age of patients at the time of surgery was 13 mo, and the mean final follow-up occurred at 42 mo. An appropriate volume with a stable joint and good appearance was obtained in 14 reconstructed thumbs. An unstable interphalangeal joint occurred in one thumb. The flexion-extension arc at the metacarpophalangeal joint was good, while that at the interphalangeal joint was poor. Most of the parents were satisfied with the cosmetic and functional results of the reconstructed thumbs. The mean ALURRA score was 21.8 (range: 20-24), and the Tada score was 6.9 (range: 5-8). Compared with the non-operated side, the length of the operated thumb was approximately 95%, the girth was 89%, and the nail width was 82.9%. The mean ranges of motion were 62.1% of that of the unaffected thumb in the interphalangeal joint and 78.3% in the metacarpophalangeal joint. CONCLUSION: Harvesting a pedicle flap from a severed thumb is a safe and reliable procedure. Defects of the preserved thumb, such as the skin, nail, and bone, can be effectively restored using the complex tissue flap.

17.
Biomed Res Int ; 2021: 8881843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33564685

RESUMEN

BACKGROUND: Diabetic cardiomyopathy is one of the cardiac complications in diabetes patients, eventually resulting in heart failure and increasing morbidity and mortality. Oxidative stress is a critical pathological feature in diabetic hearts, contributing to the development of DCM. Forskolin (FSK) was shown to reduce oxidative stress. This study was aimed at investigating the effects of FSK on diabetic hearts and the relevant molecular mechanisms. METHODS: Streptozotocin- (STZ-) induced diabetes in mice was treated with FSK through intraperitoneal injection. Cardiac functions were evaluated by echocardiography. Hematoxylin-eosin and Masson trichrome staining was employed to determine heart morphological changes and cardiac fibrosis, respectively. Cardiac fibrosis-related markers were detected by western blot. Superoxide dismutase activity, reduced/oxidized glutathione ratio, and malondialdehyde concentration in left ventricles were determined using respective commercial kits. RESULTS: Abnormal cardiac diastolic dysfunction and cardiac fibrosis were observed in diabetic hearts. FSK treatment significantly improved the cardiac diastolic function and attenuated the abnormal morphological change in diabetic hearts. Moreover, FSK treatment in diabetic mice decreased the expression of fibronectin, collagen I, TGF-ß, and α-SMA and reduced myocardial fibrosis. Furthermore, we observed that FSK significantly blocked oxidative stress in diabetic hearts. CONCLUSIONS: Our study demonstrates that FSK protects against the development of DCM in STZ-induced diabetes in mice. Our study suggests that FSK might be a potential target for drug development in treating DCM.


Asunto(s)
Colforsina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Actinas/genética , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Fibrosis/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Ratones , Miocardio/patología , Factor de Crecimiento Transformador beta/genética
18.
Biol Pharm Bull ; 33(3): 427-31, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20190404

RESUMEN

The present study was performed to evaluate the antihypertensive effects of honokiol in vivo in spontaneously hypertensive rats (SHR). The effects of honokiol were investigated by determination of the blood pressure, vascular reactivity, oxidative parameters, and histologic change in the aorta. Long-term administration of honokiol (400 mg/kg/d) to SHR decreased systolic blood pressure significantly. Honokiol (200, 400 mg/kg/d) enhanced the aortic relaxation in response to acetylcholine after 49-d treatment, but had no significant effects on the relaxation to sodium nitroprusside. The oral administration of honokiol significantly increased the plasma level of NO(2(-))/NO(3(-)), but decreased the level of malondialdehyde in liver of SHR compared with the control vehicle. In addition, SHR administered honokiol showed significant reductions in the elastin bands and media thickness in the aorta. These results suggest that chronic treatment with honokiol exerts an antihypertensive effect in SHR, and its vasorelaxant action and antioxidant properties may contribute to reducing the elevated blood pressure.


Asunto(s)
Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Hipertensión/tratamiento farmacológico , Lignanos/uso terapéutico , Magnolia/química , Extractos Vegetales/uso terapéutico , Vasodilatadores/uso terapéutico , Acetilcolina/farmacología , Animales , Antihipertensivos/farmacología , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/patología , Compuestos de Bifenilo/farmacología , Presión Sanguínea/efectos de los fármacos , Elastina/metabolismo , Lignanos/farmacología , Hígado/metabolismo , Malondialdehído/metabolismo , Nitratos/sangre , Nitritos/sangre , Nitroprusiato/farmacología , Extractos Vegetales/farmacología , Ratas , Ratas Endogámicas SHR , Vasodilatadores/farmacología
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 12(7): 527-9, 2010 Jul.
Artículo en Zh | MEDLINE | ID: mdl-20637148

RESUMEN

OBJECTIVE: To study and compare the clinical and electroencephalography (EEG) features in children with benign occipital epilepsy (BOE) of Gastaut and Panayiotopoulos types. METHODS: The clinical data of 23 children with BOE (16 Gastaut type and 7 Panayiotopoulos type) were retrospectively studied. RESULTS: The mean age of onset in the Panayiotopoulos and Gastaut groups were 4.5 and 9.1 years, respectively. The children in the Panayiotopoulos group were characterized by ictal vomiting, frequent deviation of eyes and head, frequent nocturnal seizures, and secondary generalized seizures with longer duration but less frequency. By comparison, the children in the Gastaut group were characterized by visual symptoms as ictal events, higher seizure frequency, shorter seizure duration and more frequent diurnal seizures. The EEG showed that the majority of both groups had occipital spike-wave discharges when the eyes were opened. Eleven children in the Panayiotopoulos group and all of 7 children in the Gastaut group received antiepileptic mono-drug therapy. All of the 11 children in the Panayiotopoulos group responded to the therapy, but 2 cases in the Gastaut group did not respond and 2 cases had subtle cognitive deficits. CONCLUSIONS: There are differences in the age of onset, clinical symptoms, seizure frequency and duration, and therapeutic responses between children with Panayiotopoulos and Gastaut type BOE.


Asunto(s)
Electroencefalografía , Epilepsias Parciales/fisiopatología , Niño , Preescolar , Epilepsias Parciales/tratamiento farmacológico , Femenino , Humanos , Masculino
20.
Front Aging Neurosci ; 12: 192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754028

RESUMEN

Type 2 diabetes mellitus (T2DM) increases the risk of Alzheimer's disease (AD)-like dementia and pathology. Endoplasmic reticulum stress (ERS) plays a key role in the development of cognitive impairment in T2DM. Zonisamide (ZNS) was found to suppress ERS-induced neuronal cell damage in the experimental models of Parkinson's disease (PD). However, the protective effect of Zonisamide in the treatment of diabetes-related dementia is not determined. Here, we studied whether ZNS can attenuate cognitive impairments in T2DM mice. C57BL/6J mice were fed with a high-fat diet (HFD) and received one intraperitoneal injection of streptozotocin (STZ) to develop T2DM. After the 9-week diet, the mice were orally gavaged with ZNS or vehicle for 16 consecutive weeks. We found that ZNS improved spatial learning and memory ability and slightly attenuated hyperglycemia. In addition, the expression levels of synaptic-related proteins, such as postsynaptic density 95 (PSD95) and synaptophysin, were increased along with the activation of the cyclic AMP response element-binding (CREB) protein and cAMP-dependent protein kinase (PKA) both in the hippocampus and cortex of T2DM mice. Meanwhile, ZNS attenuated Aß deposition, Tau hyperphosphorylation at Ser-396/404, and also decreased the activity of Tau upstream kinases including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Moreover, ZNS also decreased the ERS hallmark protein levels. These data suggest that ZNS can efficiently prevent cognitive impairment and improve AD-like pathologies by attenuating ERS in T2DM mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA