Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(49): e2215855119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459643

RESUMEN

Most diazotrophs fix nitrogen only under nitrogen-limiting conditions, for example, in the presence of relatively low concentrations of NH4+ (0 to 2 mM). However, Paenibacillus sabinae T27 exhibits an unusual pattern of nitrogen regulation of nitrogen fixation, since although nitrogenase activities are high under nitrogen-limiting conditions (0 to 3 mM NH4+) and are repressed under conditions of nitrogen sufficiency (4 to 30 mM NH4+), nitrogenase activity is reestablished when very high levels of NH4+ (30 to 300 mM) are present in the medium. To further understand this pattern of nitrogen fixation regulation, we carried out transcriptome analyses of P. sabinae T27 in response to increasing ammonium concentrations. As anticipated, the nif genes were highly expressed, either in the absence of fixed nitrogen or in the presence of a high concentration of NH4+ (100 mM), but were subject to negative feedback regulation at an intermediate concentration of NH4+ (10 mM). Among the differentially expressed genes, ald1, encoding alanine dehydrogenase (ADH1), was highly expressed in the presence of a high level of NH4+ (100 mM). Mutation and complementation experiments revealed that ald1 is required for nitrogen fixation at high ammonium concentrations. We demonstrate that alanine, synthesized by ADH1 from pyruvate and NH4+, inhibits GS activity, leading to a low intracellular glutamine concentration that prevents feedback inhibition of GS and mimics nitrogen limitation, enabling activation of nif transcription by the nitrogen-responsive regulator GlnR in the presence of high levels of extracellular ammonium.


Asunto(s)
Alanina-Deshidrogenasa , Compuestos de Amonio , Fijación del Nitrógeno/genética , Alanina/genética , Nitrógeno , Ácido Pirúvico , Nitrogenasa/genética
2.
Anal Chem ; 96(5): 1948-1956, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265884

RESUMEN

Organic electrochemical transistors with signal amplification and good stability are expected to play a more important role in the detection of environmental pollutants. However, the bias voltage at the gate may have an effect on the activity of vulnerable biomolecules. In this work, a novel organic photoelectrochemical transistor (OPECT) aptamer biosensor was developed for di(2-ethylhexyl) phthalate (DEHP) detection by combining photoelectrochemical analysis with an organic electrochemical transistor, where MXene/Bi2S3/CdIn2S4 was employed as a photoactive material, target-dependent DNA hybridization chain reaction was used as a signal amplification unit, and Ru(NH3)63+ was selected as a signal enhancement molecule. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based OPECT biosensor modulated by the MXene/Bi2S3/CdIn2S4 photosensitive material achieved a high current gain of nearly a thousand times at zero bias voltage. The developed signal-on OPECT sensing platform realized sensitive and specific detection of DEHP, with a detection range of 1-200 pM and a minimum detection limit of 0.24 pM under optimized experimental conditions, and its application to real water samples was also evaluated with satisfactory results. Hence, the construction of this OPECT biosensing platform not only provides a promising tool for the detection of DEHP but also reveals the great potential of the OPECT application for the detection of other environmental toxins.


Asunto(s)
Técnicas Biosensibles , Dietilhexil Ftalato , Nitritos , Elementos de Transición , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Oligonucleótidos , Límite de Detección
3.
Small ; 20(15): e2306365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009777

RESUMEN

Oxygen vacancy defects (OVs) are one of the main strategies for nanomaterials modification to improve the photoactivity, but current methods for fabricating OVs are usually complicated and harsh. It is important to develop simple, rapid, safe, and mild methods to fabricate OVs. By studying the effects of different weak reducing agents, the concentration of the reducing agent and the reaction time on fabrication of OVs, it is found that L-ascorbic acid (AA) gently and rapidly induces the increase of OVs in Bi4O5Br2 at room temperature. The increased OVs not only improve the adsorption of visible light, but also enhance the photocurrent response. Based on this, the preparation of OVs in Bi4O5Br2 is employed to the development of a photoelectrochemical biosensor for the detection of DNA demethylase of methyl-CpG binding domain protein 2 (MBD2). The biosensor shows a wide linear range of 0.1-400 ng mL-1 and a detection limit as low as 0.03 ng mL-1 (3σ). In addition, the effect of plasticizers on MBD2 activity is evaluated using this sensor. This work not only provides a novel method to prepare OVs in bismuth rich materials, but also explores a new novel evaluation tool for studying the ecotoxicological effects of contaminants.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Ácido Ascórbico , Oxígeno , ADN , Luz , Técnicas Biosensibles/métodos
4.
J Environ Manage ; 359: 121071, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718608

RESUMEN

Particulate matter with an aerodynamic diameter of less than 1 µm (PM1.0) can be extremely hazardous to human health, so it is imperative to accurately estimate the spatial and temporal distribution of PM1.0 and analyze the impact of related policies on it. In this study, a stacking generalization model was trained based on aerosol optical depth (AOD) data from satellite observations, combined with related data affecting aerosol concentration such as meteorological data and geographic data. Using this model, the PM1.0 concentration distribution in China during 2016-2019 was estimated, and verified by comparison with ground-based stations. The coefficient of determination (R2) of the model is 0.94, and the root-mean-square error (RMSE) is 8.49 µg/m3, mean absolute error (MAE) is 4.10 µg/m3, proving that the model has a very high performance. Based on the model, this study analyzed the PM1.0 concentration changes during the heating period (November and December) in the regions where the "coal-to-gas" policy was implemented in China, and found that the proposed "coal-to-gas" policy did reduce the PM1.0 concentration in the implemented regions. However, the lack of natural gas due to the unreasonable deployment of the policy in the early stage caused the increase of PM1.0 concentration. This study can provide a reference for the next step of urban air pollution policy development.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , China , Contaminantes Atmosféricos/análisis , Carbón Mineral , Monitoreo del Ambiente , Contaminación del Aire/análisis , Aerosoles/análisis
5.
Nat Methods ; 17(12): 1214-1221, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257830

RESUMEN

Cryogenic electron microscopy (cryo-EM) is widely used to study biological macromolecules that comprise regions with disorder, flexibility or partial occupancy. For example, membrane proteins are often kept in solution with detergent micelles and lipid nanodiscs that are locally disordered. Such spatial variability negatively impacts computational three-dimensional (3D) reconstruction with existing iterative refinement algorithms that assume rigidity. We introduce non-uniform refinement, an algorithm based on cross-validation optimization, which automatically regularizes 3D density maps during refinement to account for spatial variability. Unlike common shift-invariant regularizers, non-uniform refinement systematically removes noise from disordered regions, while retaining signal useful for aligning particle images, yielding dramatically improved resolution and 3D map quality in many cases. We obtain high-resolution reconstructions for multiple membrane proteins as small as 100 kDa, demonstrating increased effectiveness of cryo-EM for this class of targets critical in structural biology and drug discovery. Non-uniform refinement is implemented in the cryoSPARC software package.


Asunto(s)
Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Proteínas Intrínsecamente Desordenadas/análisis , Proteínas de la Membrana/análisis , Algoritmos , Programas Informáticos
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 989-995, 2023 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-37879929

RESUMEN

The Monte Carlo N-Particle (MCNP) is often used to calculate the radiation dose during computed tomography (CT) scans. However, the physical calculation process of the model is complicated, the input file structure of the program is complex, and the three-dimensional (3D) display of the geometric model is not supported, so that the researchers cannot establish an accurate CT radiation system model, which affects the accuracy of the dose calculation results. Aiming at these two problems, this study designed a software that visualized CT modeling and automatically generated input files. In terms of model calculation, the theoretical basis was based on the integration of CT modeling improvement schemes of major researchers. For 3D model visualization, LabVIEW was used as the new development platform, constructive solid geometry (CSG) was used as the algorithm principle, and the introduction of editing of MCNP input files was used to visualize CT geometry modeling. Compared with a CT model established by a recent study, the root mean square error between the results simulated by this visual CT modeling software and the actual measurement was smaller. In conclusion, the proposed CT visualization modeling software can not only help researchers to obtain an accurate CT radiation system model, but also provide a new research idea for the geometric modeling visualization method of MCNP.


Asunto(s)
Programas Informáticos , Tomografía Computarizada por Rayos X , Dosis de Radiación , Diseño de Software , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Fantasmas de Imagen , Método de Montecarlo
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 1012-1018, 2023 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-37879932

RESUMEN

In recent years, photon-counting computed tomography (PCD-CT) based on photon-counting detectors (PCDs) has become increasingly utilized in clinical practice. Compared with conventional CT, PCD-CT has the potential to achieve micron-level spatial resolution, lower radiation dose, negligible electronic noise, multi-energy imaging, and material identification, etc. This advancement facilitates the promotion of ultra-low dose scans in clinical scenarios, potentially detecting minimal and hidden lesions, thus significantly improving image quality. However, the current state of the art is limited and issues such as charge sharing, pulse pileup, K-escape and count rate drift remain unresolved. These issues could lead to a decrease in image resolution and energy resolution, while an increasing in image noise and ring artifact and so on. This article systematically reviewed the physical principles of PCD-CT, and outlined the structural differences between PCDs and energy integration detectors (EIDs), and the current challenges in the development of PCD-CT. In addition, the advantages and disadvantages of three detector materials were analysed. Then, the clinical benefits of PCD-CT were presented through the clinical application of PCD-CT in the three diseases with the highest mortality rate in China (cardiovascular disease, tumour and respiratory disease). The overall aim of the article is to comprehensively assist medical professionals in understanding the technological innovations and current technical limitations of PCD-CT, while highlighting the urgent problems that PCD-CT needs to address in the coming years.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Ruido , China , Fantasmas de Imagen
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 35-43, 2023 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-36854546

RESUMEN

Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Polisomnografía , China , Algoritmos
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 458-464, 2023 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-37380384

RESUMEN

Sleep staging is the basis for solving sleep problems. There's an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.


Asunto(s)
Fases del Sueño , Sueño , China , Electroencefalografía , Bases de Datos Factuales
10.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G310-G326, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34984923

RESUMEN

Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components, and immune regulation of MATs, to characterize the mesenteric differences. The SMAT and LMAT of mice were used for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, whereas development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.NEW & NOTEWORTHY Our results change the paradigm of how we regard MAT as a contiguous and homogeneous tissue to an intensely heterogeneous tissue. Appreciation of the differences between regional MATs will guide future research to investigate the specialized roles of different MATs in intestinal health and disease.


Asunto(s)
Tejido Adiposo , Microbiota , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Intestinos , Mesenterio , Ratones
11.
BMC Ophthalmol ; 22(1): 516, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581827

RESUMEN

BACKGROUND: To investigate posture-induced changes in intraocular pressure (IOP) after ab externo XEN45 Gel-Stent implantation in patients with medically uncontrolled primary open-angle glaucoma (POAG). METHODS: This prospective study included thirty-two eyes with POAG that underwent XEN45 Gel-Stent implantation as a standalone procedure using an ab externo approach at Chonnam National University Hospital. IOP was measured sequentially in the sitting position, supine position, and lateral decubitus position (LDP) before and at 1, 2, 3, and 6 months after surgery using an iCare IC200 rebound tonometer. In the LDP, the eye with XEN45 Gel-Stent implantation was in the dependent position. RESULTS: IOP at each position was significantly reduced after XEN45 Gel-Stent implantation. Posture-induced changes in IOP were maintained during the follow-up. The range of postural IOP changes was reduced at 1 month; however, no significant change was observed after that point compared with baseline levels. CONCLUSIONS: A XEN45 Gel-Stent inserted using the ab externo approach can reduce IOP in various body positions, but seems to have limited effects on posture-induced changes in IOP in patients with POAG.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Humanos , Glaucoma de Ángulo Abierto/cirugía , Estudios Prospectivos , Tonometría Ocular , Postura , Resultado del Tratamiento
12.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616654

RESUMEN

Currently, the world is facing the problem of bacterial resistance, which threatens public health, and bacterial antimicrobial susceptibility testing (AST) plays an important role in biomedicine, dietary safety and aquaculture. Traditional AST methods take a long time, usually 16-24 h, and cannot meet the demand for rapid diagnosis in the clinic, so rapid AST methods are needed to shorten the detection time. In this study, by using an in-house built centrifuge to centrifuge bacteria in a liquid medium onto the inner wall of the bottom surface of a counting plate, and using a phase contrast microscope to track bacterial growth under the effect of different antibiotic concentrations, the results of the minimum inhibitory concentration (MIC) of bacteria under the effect of antibiotics can be obtained in as early as 4 h. We used a combination of E. coli and tigecycline and obtained MIC results that were consistent with those obtained using the gold standard broth micro-dilution method, demonstrating the validity of our method; due to the time advantage, the complete set can be used in the future for point of care and clinical applications, helping physicians to quickly obtain the MIC used to inhibit bacterial growth.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana , Medios de Cultivo
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(4): 672-678, 2022 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-36008330

RESUMEN

This study aims to analyze the biomechanical stability of Magic screw in the treatment of acetabular posterior column fractures by finite element analysis. A three-dimensional finite element model of the pelvis was established based on the computed tomography (CT) and magnetic resonance imaging (MRI) data of a volunteer and its effectiveness was verified. Then, the posterior column fracture model of the acetabulum was generated. The biomechanical stability of the four internal fixation models was compared. The 500 N force was applied to the upper surface of the sacrum to simulate human gravity. The maximum implant stresses of retrograde screw fixation, single-plate fixation, double-plate fixation and Magic screw fixation model in standing and sitting position were as follows: 114.10, 113.40 MPa; 58.93, 55.72 MPa; 58.76, 47.47 MPa; and 24.36, 27.50 MPa, respectively. The maximum stresses at the fracture end were as follows: 72.71, 70.51 MPa; 48.18, 22.80 MPa; 52.38, 27.14 MPa; and 34.05, 30.78 MPa, respectively. The fracture end displacement of the retrograde tension screw fixation model was the largest in both states, and the Magic screw had the smallest displacement variation in the standing state, but it was significantly higher than the two plate fixations in the sitting state. Magic screw can satisfy the biomechanical stability of posterior column fracture. Compared with traditional fixations, Magic screw has the advantages of more uniform stress distribution and less stress, and should be recommended.


Asunto(s)
Fracturas Óseas , Fracturas de la Columna Vertebral , Fenómenos Biomecánicos , Placas Óseas , Tornillos Óseos , Análisis de Elementos Finitos , Fijación Interna de Fracturas/métodos , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Humanos
14.
Mol Plant Microbe Interact ; 34(12): 1378-1389, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34890249

RESUMEN

Fusaricidins produced by Paenibacillus polymyxa are important lipopeptide antibiotics against fungi. The fusGFEDCBA (fusaricidin biosynthesis) operon is responsible for synthesis of fusaricidins. However, the regulation mechanisms of fusaricidin biosynthesis remain to be fully clarified. In this study, we revealed that fusaricidin production is controlled by a complex regulatory network including KinB-Spo0A-AbrB. Evidence suggested that the regulator AbrB represses the transcription of the fus gene cluster by direct binding to the fus promoter, in which the sequences (5'-AATTTTAAAATAAATTTTGTGATTT-3') located from -136 to -112 bp relative to the transcription start site is required for this repression. Spo0A binds to the abrB promoter that contains the Spo0A-binding sequences (5'-TGTCGAA-3', 0A box) and in turn prevents the further transcription of abrB. The decreasing concentration of AbrB allows for the derepression of the fus promoter repressed by AbrB. The genome of P. polymyxa WLY78 contains two orthologs (named Kin1508 and Kin4833) of Bacillus subtilis KinB, but only Kin4833 activates sporulation and fusaricidin production, indicating that this kinase may be involved in phosphorylating Spo0A to initiate sporulation and regulate the abrB transcription. Our results reveal that Kin4833 (KinB), Spo0A, and AbrB are involved in regulation of fusaricidin production and a signaling mechanism that links fusaricidin production and sporulation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Paenibacillus polymyxa , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Paenibacillus polymyxa/metabolismo , Transducción de Señal , Esporas Bacterianas
15.
Microb Cell Fact ; 20(1): 139, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281551

RESUMEN

BACKGROUND: Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. RESULTS: A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. CONCLUSIONS: The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/biosíntesis , Paenibacillus/genética , Proteínas Bacterianas/clasificación , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Filogenia
16.
Biomed Eng Online ; 20(1): 126, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920735

RESUMEN

PURPOSE: The purpose of this paper is to design a prosthetic limb that is close to the motion characteristics of the normal human ankle joint. METHODS: In this study, combined with gait experiments, based on a dynamic ankle joint prosthesis, an active-passive hybrid-driven prosthesis was designed. On this basis, a real-time control algorithm based on the feedforward compensation angle outer loop is proposed. To test the effectiveness of the control method, a multi-body dynamic model and a controller model of the prosthesis were established, and a co-simulation study was carried out. RESULTS: A real-time control algorithm based on the feedforward compensation angle outer loop can effectively realize the gait angle curve measured in the gait test, and the error is less than the threshold. The co-simulation result and the test result have a high close rate, which reflects the real-time nature of the control algorithm. The use of parallel springs can improve the energy efficiency of the prosthetic system. CONCLUSIONS: Based on the motion characteristics of human ankle joint prostheses, this research has completed an effective and feasible design of active and passive ankle joint prostheses. The use of control algorithms improves the controllability of the active and passive ankle joint prostheses.


Asunto(s)
Miembros Artificiales , Biónica , Análisis de la Marcha , Humanos
17.
Appl Microbiol Biotechnol ; 105(7): 2889-2899, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33745008

RESUMEN

Biological nitrogen fixation is usually inhibited by fixed nitrogen. Paenibacillus sabinae T27, a Gram-positive, spore-forming diazotroph, possesses high nitrogenase activity and has 3 copies of nifH (nifH, nifH2, nifH3), a copy of nifDK, and multiple nifHDK-like genes. In this study, we found that P. sabinae T27 showed nitrogenase activities not only in low (0-3 mM) concentrations of NH4+ but also in high (30-300 mM) concentrations of NH4+, no matter whether this bacterium was grown in a flask or in a fermenter on scale cultivation. qRT-PCR and western blotting analyses supported that Fe protein and MoFe protein were synthesized under both low (0-3 mM) and high (30-300 mM) concentrations of NH4+. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that MoFe protein was encoded by nifDK and Fe protein was encoded by both nifH and nifH2. The cross-reaction suggested the purified Fe and MoFe components from P. sabinae T27 grown in both nitrogen-limited and nitrogen-excess conditions were active. This is the first time to report that diazotrophs show nitrogenase activity in presence of high (30-300 mM) concentrations of NH4+. Our study will provide a clue for studying the mechanisms of nitrogen fixation in presence of the high concentration of NH4+. KEY POINTS: • P. sabinae T27 can synthesize active nitrogenase in presence of high levels of ammonia. •Fe and MoFe proteins of nitrogenase purified in absence of ammonia are the same as those purified from the high concentration of ammonia. • Fe protein is encoded by nifH and nifH2, and MoFe protein is encoded by nifDK.


Asunto(s)
Amoníaco , Nitrogenasa , Anaerobiosis , Fermentación , Fijación del Nitrógeno , Nitrogenasa/metabolismo , Paenibacillus
18.
PLoS Genet ; 14(9): e1007629, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30265664

RESUMEN

Ammonia is a major signal that regulates nitrogen fixation in most diazotrophs. Regulation of nitrogen fixation by ammonia in the Gram-negative diazotrophs is well-characterized. In these bacteria, this regulation occurs mainly at the level of nif (nitrogen fixation) gene transcription, which requires a nif-specific activator, NifA. Although Gram-positive and diazotrophic Paenibacilli have been extensively used as a bacterial fertilizer in agriculture, how nitrogen fixation is regulated in response to nitrogen availability in these bacteria remains unclear. An indigenous GlnR and GlnR/TnrA-binding sites in the promoter region of the nif cluster are conserved in these strains, indicating the role of GlnR as a regulator of nitrogen fixation. In this study, we for the first time reveal that GlnR of Paenibacillus polymyxa WLY78 is essentially required for nif gene transcription under nitrogen limitation, whereas both GlnR and glutamine synthetase (GS) encoded by glnA within glnRA operon are required for repressing nif expression under excess nitrogen. Dimerization of GlnR is necessary for binding of GlnR to DNA. GlnR in P. polymyxa WLY78 exists in a mixture of dimers and monomers. The C-terminal region of GlnR monomer is an autoinhibitory domain that prevents GlnR from binding DNA. Two GlnR-biding sites flank the -35/-10 regions of the nif promoter of the nif operon (nifBHDKENXhesAnifV). The GlnR-binding site Ⅰ (located upstream of -35/-10 regions of the nif promoter) is specially required for activating nif transcription, while GlnR-binding siteⅡ (located downstream of -35/-10 regions of the nif promoter) is for repressing nif expression. Under nitrogen limitation, GlnR dimer binds to GlnR-binding siteⅠ in a weak and transient association way and then activates nif transcription. During excess nitrogen, glutamine binds to and feedback inhibits GS by forming the complex FBI-GS. The FBI-GS interacts with the C-terminal domain of GlnR and stabilizes the binding affinity of GlnR to GlnR-binding site Ⅱ and thus represses nif transcription.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Fijación del Nitrógeno/fisiología , Paenibacillus polymyxa/fisiología , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Técnicas de Transferencia de Gen , Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Operón/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
19.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809732

RESUMEN

Serine is important for nearly all microorganisms in protein and downstream amino acids synthesis, however, the effect of serine on growth and nitrogen fixation was not completely clear in many bacteria, besides, the regulatory mode of serine remains to be fully established. In this study, we demonstrated that L-serine is essential for growth and nitrogen fixation of Paenibacillus polymyxa WLY78, but high concentrations of L-serine inhibit growth, nitrogenase activity, and nifH expression. Then, we revealed that expression of the serA whose gene product catalyzes the first reaction in the serine biosynthetic pathway is regulated by the T-box riboswitch regulatory system. The 508 bp mRNA leader region upstream of the serA coding region contains a 280 bp T-box riboswitch. The secondary structure of the T-box riboswitch with several conserved features: three stem-loop structures, a 14-bp T-box sequence, and an intrinsic transcriptional terminator, is predicted. Mutation and the transcriptional leader-lacZ fusions experiments revealed that the specifier codon of serine is AGC (complementary to the anticodon sequence of tRNAser). qRT-PCR showed that transcription of serA is induced by serine starvation, whereas deletion of the specifier codon resulted in nearly no expression of serA. Deletion of the terminator sequence or mutation of the continuous seven T following the terminator led to constitutive expression of serA. The data indicated that the T-box riboswitch, a noncoding RNA segment in the leader region, regulates expression of serA by a transcription antitermination mechanism.


Asunto(s)
Paenibacillus polymyxa/metabolismo , Riboswitch/genética , Serina/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón/genética , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Nitrogenasa/metabolismo , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , Paenibacillus polymyxa/efectos de los fármacos , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/crecimiento & desarrollo , ARN Bacteriano/química , ARN Bacteriano/genética , Serina/farmacología
20.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466733

RESUMEN

RNA-binding proteins are frequently dysregulated in human cancer and able to modulate tumor cell proliferation as well as tumor metastasis through post-transcriptional regulation on target genes. Abnormal DNA damage response and repair mechanism are closely related to genome instability and cell transformation. Here, we explore the function of the RNA-binding protein muscleblind-like splicing regulator 2 (MBNL2) on tumor cell proliferation and DNA damage response. Transcriptome and gene expression analysis show that the PI3K/AKT pathway is enriched in MBNL2-depleted cells, and the expression of cyclin-dependent kinase inhibitor 1A (p21CDKN1A) is significantly affected after MBNL2 depletion. MBNL2 modulates the mRNA and protein levels of p21, which is independent of its canonical transcription factor p53. Moreover, depletion of MBNL2 increases the phosphorylation levels of checkpoint kinase 1 (Chk1) serine 345 (S345) and DNA damage response, and the effect of MBNL2 on DNA damage response is p21-dependent. MBNL2 would further alter tumor cell fate after DNA damage, MBNL2 knockdown inhibiting DNA damage repair and DNA damage-induced senescence, but promoting DNA damage-induced apoptosis.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN/genética , Apoptosis/genética , Proliferación Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HCT116 , Células HeLa , Humanos , Fosforilación , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA