Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2405225, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161189

RESUMEN

To meet the industrial demand for overall water splitting, oxygen evolution reaction (OER) electrocatalysts with low-cost, highly effective, and durable properties are urgently required. Herein, a facile confined strategy is utilized to construct 2D NiFe2O4/Ni(OH)2 heterostructures-based self-supporting electrode with surface-interfacial coengineering, in which abundant and ultrastable interfaces are developed. Under the high molar ratio of Ni/Fe, both spinel oxide and hydroxides phases are formed simultaneously to obtain 2D NiFe2O4/Ni(OH)2 heterostructure. The in-depth analysis indicates that the NiFe2O4/Ni(OH)2 interface displays strong electronic interactions and triggers the formation of crystalline-amorphous coexisting catalytic active NiOOH. Meanwhile, the stable catalyst-collector interface favors the electron transfer and oxygen molecules transport. The resultant 2D NiFe2O4/Ni(OH)2@CP electrode exhibits superior OER performance, including a low overpotential of 389 mV and a long operating time of 12 h at 1 A cm-2. This work paves a novel method for fabricating efficient and low-cost electrocatalysts for electrochemical conversation devices.

2.
Small ; 20(24): e2307794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168483

RESUMEN

Nanocatalytic therapy, an emerging approach in cancer treatment, utilizes nanomaterials to initiate enzyme-mimetic catalytic reactions within tumors, inducing tumor-suppressive effects. However, the targeted and selective catalysis within tumor cells is challenging yet critical for minimizing the adverse effects. The distinctive reliance of tumor cells on glycolysis generates abundant lactate, influencing the tumor's pH, which can be manipulated to selectively activate nanozymatic catalysis. Herein, small interfering ribonucleic acid (siRNA) targeting lactate transporter-mediated efflux is encapsulated within the iron-based metal-organic framework (FeMOF) and specifically delivered to tumor cells through cell membrane coating. This approach traps lactate within the cell, swiftly acidifying the tumor cytoplasm and creating an environment for boosting the catalysis of the FeMOF nanozyme. The nanozyme generates hydroxyl radical (·OH) in the reversed acidic environment, using endogenous hydrogen peroxide (H2O2) produced by mitochondria as a substrate. The induced cytoplasmic acidification disrupts calcium homeostasis, leading to mitochondrial calcium overload, resulting in mitochondrial dysfunction and subsequent tumor cell death. Additionally, the tumor microenvironment is also remodeled, inhibiting migration and invasion, thus preventing metastasis. This groundbreaking strategy combines metabolic regulation with nanozyme catalysis in a toxic drug-free approach for tumor treatment, holding promise for future clinical applications.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Catálisis , Línea Celular Tumoral , Microambiente Tumoral , ARN Interferente Pequeño/metabolismo , Animales , Mitocondrias/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Radical Hidroxilo/metabolismo , Nanoestructuras/química
3.
Opt Express ; 32(5): 7342-7355, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439417

RESUMEN

Coherent superposition has been proposed to synthesize high-order quadrature amplitude modulation (QAM) by coherently superposing low-order QAMs in the optical domain. These approaches could effectively relax the digital-to-analog converter resolution and reduce the complexity of the driving electronics. However, in the superposition process, imperfect phase rotations (IPRs) in low-order QAMs will be transferred to the resultant high-order QAM. Importantly, the induced IPR cannot be compensated for by conventional linear equalizers and carrier recovery methods. To combat the induced IPR, herein, we propose a hierarchical blind phase search (HBPS) algorithm to compensate for the IPRs in synthesized high-order QAMs. The proposed HBPS can match the generation mechanism of the IPRs in coherent superposition, by tracing back and estimating the IPR in the QPSK-like constellation of each hierarchy and finally correcting the induced IPRs. Simulation and experimental results verify that this algorithm could effectively compensate for the IPR in the resultant 16-QAMs synthesized using coherent superposition approaches. The proposed HBPS shows significant optical signal-to-noise ratio (OSNR) gains compared to the conventional blind phase search (BPS) method for high-order QAMs coherently superposed using optical signal processing (OSP) and tandem modulators (TMs). Specifically, at the BER of 2.4e-2, the HBPS achieves a 1.5-dB OSNR sensitivity enhancement over the BPS in either OSP or TMs-based schemes, even with an imperfection rotation of up to 20∘.

4.
Toxicol Appl Pharmacol ; 485: 116910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521372

RESUMEN

3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.


Asunto(s)
Meiosis , Nitrocompuestos , Oocitos , Estrés Oxidativo , Propionatos , Triterpenos , Ácido Ursólico , Animales , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Femenino , Meiosis/efectos de los fármacos , Ratones , Triterpenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Autofagia/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Ratones Endogámicos ICR
5.
Chemistry ; : e202402875, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148303

RESUMEN

Highly enantioselective Rh-catalyzed allylic substitution of the racemic branched allylic substrates with 2-fluoromalonate was realized enabled by a novel chiral sulfoxide-imine-olefin ligand under mild reaction conditions. The utilization of CuSO4 is beneficial for improving the enantioselectivity. Notably, the chiral fluoro-containing allyl products can be employed in a selective cyclic esterification to form chiral α-fluorolactone bearing vicinal stereogenic centers.

6.
Biomed Eng Online ; 23(1): 73, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061069

RESUMEN

BACKGROUND: Minimally invasive glaucoma surgery (MIGS) has experienced a surge in popularity in recent years. Glaucoma micro-stents serve as the foundation for these minimally invasive procedures. Nevertheless, the utilization of these stents still presents certain short-term and long-term complications. This study aims to elucidate the creation of a novel drainage stent implant featuring a diverging channel, produced through microfluidic template processing technology. Additionally, an analysis of the mechanical properties, biocompatibility, and feasibility of implantation is conducted. RESULTS: The stress concentration value of the proposed stent is significantly lower, approximately two to three times smaller, compared to the currently available commercial XEN gel stent. This indicates a stronger resistance to bending in theory. Theoretical calculations further reveal that the initial drainage efficiency of the gradient diverging drainage stent is approximately 5.76 times higher than that of XEN stents. Notably, in vivo experiments conducted at the third month demonstrate a favorable biocompatibility profile without any observed cytotoxicity. Additionally, the drainage stent exhibits excellent material stability in an in vitro simulation environment. CONCLUSIONS: In summary, the diverging drainage stent presents a novel approach to the cost-effective and efficient preparation process of minimally invasive glaucoma surgery (MIGS) devices, offering additional filtering treatment options for glaucoma.


Asunto(s)
Glaucoma , Stents , Glaucoma/cirugía , Animales , Microfluídica/instrumentación , Ensayo de Materiales , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Fenómenos Mecánicos , Diseño de Equipo , Conejos
7.
Biochem Genet ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374521

RESUMEN

Klinefelter syndrome (KS) is the most frequent genetic anomaly in infertile men. Given its unclear mechanism, we aim to investigate critical genes and pathways in the pathogenesis of KS based on three bulk and one single-cell transcriptome data sets from Gene Expression Omnibus. We merged two data sets (GSE42331 and GSE47584) with human KS whole blood samples. When comparing the control and KS samples, five hub genes, including defensin alpha 4 (DEFA4), bactericidal permeability increasing protein (BPI), myeloperoxidase (MPO), intelectin 1 (ITLN1), and Xg Glycoprotein (XG), were identified. Besides, infiltrated degree of certain immune cells such as CD56bright NK cell were positively associated with the expression of ITLN1 and XG. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated phosphatidylinositol 3-kinase (PI3K)/AKT pathway in KS. Gene set enrichment analysis followed by gene set variation analysis confirmed the upregulation of G2M checkpoint and heme metabolism in KS. Thereafter, the GSE200680 data set was used for external validation of the expression variation of hub genes from healthy to KS testicular samples, and each hub gene yielded excellent discriminatory capability for KS without exception. At the single-cell level, the GSE136353 data set was utilized to evaluate intercellular communication between different cell types in KS patient, and strong correlations were detected between macrophages/ dendritic cells/ NK cells and the other cell types. Collectively, we provided hub genes, pathways, immune cell infiltration degree, and cell-cell communication in KS, warranting novel insights into the pathogenesis of this disease.

8.
J Environ Manage ; 355: 120514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460330

RESUMEN

With improvements in urban waste management to promote sustainable development, an increasing number of waste types need to be sorted and treated separately. Due to the relatively low amount of waste generated in small- and medium-sized cities, separate treatment facilities for each waste type lack scale, waste is treated at a high cost and low efficiency. Therefore, industrial symbiosis principles are suggested to be used to guide collaborative waste treatment system of multi-source solid wastes, and co-incineration is the most commonly used technology. Most existing studies have focused on co-incineration of one certain waste type (such as sludge or medical waste) with municipal solid waste (MSW), but the systematic design and the comprehensive benefits on a whole city and park level have not been widely studied. Taking the actual operation of a multi-source waste co-incineration park in south-central China as an example, this study conducted a detailed analysis of the waste-energy-water metabolism process of MSW, sludge, food waste, and medical waste co-incineration. The environmental and economic benefits were evaluated and compared with the single decentralized waste treatment mode. The results showed that the multi-source waste co-incineration and clustering park operating model was comprehensively superior to the single treatment mode, greenhouse gases and human toxicity indicators were decreased by 11.87% and 295.74%, respectively, and the internal rate of return of the project was increased by 29.35%. This mainly benefits from the synergy of technical system and the economies of scale. Finally, this research proposed policy suggestions from systematic planning and design, technical route selection, and an innovative management mode in view of the potential challenges.


Asunto(s)
Residuos Sanitarios , Eliminación de Residuos , Administración de Residuos , Humanos , Aguas del Alcantarillado/análisis , Ciudades , Alimentos , Incineración , Residuos Sólidos/análisis , Residuos Sanitarios/análisis , China
9.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577746

RESUMEN

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

10.
Environ Monit Assess ; 196(2): 212, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285189

RESUMEN

Due to rising land development, mitigating the negative effects of land use change is becoming a problem. Understanding how land development affects flood inundation is critical for long-term water resource management. This study evaluates the land use change in the Konkoure River Basin and its impact on flood inundation. The land use changes were assessed using Landsat image (level 1) in August 2006 and August 2021. In addition, we used GIS and remote sensing applications to assess the degree of changes that took place in the Konkoure watershed. According to the findings, 32.16% of the total area became built-up areas, and 35.51% was converted to other land uses in Konkoure watershed. Konkoure's most significant change is that 29.50% of forest area transformed into built-up areas and other land uses. The rainfall-runoff-inundation model (RRI) based inundation of the Konkoure River Basin was compared to the MODIS extent between 31 August 2006 and 30 August 2021 flood events. Flood inundation variations in the Konkoure watershed were studied in terms of inundation area, peak inundation depth, runoff volume, and the infiltration rate. As a result, the flood inundation area increased from 139.98 to 198.72 km2 and the infiltration rate decrease from 7 to 5 mm/h. Moreover, we used flow duration curves (FDCs) to fully comprehend the streamflow processes. The result indicates that the Konkoure watershed has experienced flooding partly due to land use change.


Asunto(s)
Inundaciones , Ríos , Guinea , Monitoreo del Ambiente , Bosques
12.
ChemSusChem ; : e202400478, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923202

RESUMEN

Catalytic conversion of carbon dioxide (CO2) into value-added chemicals is of pivotal importance, well the cost of capturing CO2 from dilute atmosphere is super challenge. One promising strategy is combining the adsorption and transformation at one step, such as applying alkali solution that could selectively reduce carbonate (CO3 2-) as consequences of CO2 adsorption. Due to complexity of this system, the mechanistic details on controlling the hydrogenation have not been investigated in depth. Herein, Ru/TiO2 catalyst was applied as a probe to elucidate the mechanism of CO3 2- activation, in which with thermodynamic and kinetic investigations, a compact Langmuir-Hinshelwood reaction model was established which suggests that the overall rate of CO3 2- hydrogenation was controlled by a specific C-O bond rupture elementary step within HCOO- and the Ru surface was mainly covered by CO3 2- or HCOO- at independent conditions. This assumption was further supported by negligible kinetic isotope effects (kH/kD≈1), similarity on reaction barriers of CO3 2- and HCOO- hydrogenation (ΔH≠ hydr,Na2CO3 and ΔH≠ hydr,HCOONa) and a non-variation of entropy (ΔS≠ hydr≈0). More interestingly, the alkalinity of the solution is certainly like a two sides in a sword and could facilitate the adsorption of CO2 while hold back catalysis during CO3 2- hydrogenation.

13.
Int Immunopharmacol ; 128: 111466, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176345

RESUMEN

The cardioprotective role of sivelestat, a neutrophil elastase inhibitor, has already been demonstrated, but the underlying molecular mechanism remains unclear. This study aimed to explore the mechanism underlying the role of sivelestat in sepsis-induced myocardial dysfunction (SIMD). We found that sivelestat treatment remarkably improved the viability and suppressed the apoptosis of lipopolysaccharide (LPS)-stimulated H9c2 cells. In vivo, sivelestat treatment was associated with an improved survival rate; reduced serum cTnT, TNF-α, IL-1ß levels and myocardial TNF-α and IL-1ß levels; ameliorated cardiac function and structure; and reduced cardiomyocyte apoptosis. Moreover, sivelestat treatment substantially increased Bcl-2 expression and suppressed caspase-3 and Bax expression in LPS-induced H9c2 cells and in the heart tissues of septic rats. Furthermore, the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling pathway was activated both in vitro and in vivo. The protective effect of sivelestat against SIMD was reversed by the PI3K inhibitor LY294002. In summary, sivelestat can protect against SIMD by activating the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Cardiomiopatías , Glicina/análogos & derivados , Sepsis , Sulfonamidas , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Sepsis/metabolismo
14.
Curr Med Imaging ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38415475

RESUMEN

The 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System has brought a transformative shift in the categorization of adult gliomas. Departing from traditional histological subtypes, the new classification system is guided by molecular genotypes, particularly the Isocitrate Dehydrogenase (IDH) mutation. This alteration reflects a pivotal change in understanding tumor behavior, emphasizing the importance of molecular profiles over morphological characteristics. Gliomas are now categorized into IDH-mutant and IDH wildtype, with significant prognostic implications. For IDH-mutant gliomas, the concurrent presence of Alpha-Thalassemia/mental retardation syndrome X-linked (ATRX) gene expression and co-deletion of 1p19q genes further refine classification. In the absence of 1p19q co-deletion, further categorization depends on the phenotypic expression of CDKN2A/B. Notably, IDH wildtype gliomas exhibit a poorer prognosis, particularly when associated with TERT promoter mutations, EGFR amplification, and +7/-10 co-deletion. Although not part of the new guidelines, the methylation status of the MGMT gene is crucial for guiding alkylating agent treatment. The integration of structural and functional Magnetic Resonance Imaging (MRI) techniques may play a vital role in evaluating these genetic phenotypes, offering insights into tumor microenvironment changes. This multimodal approach may enhance diagnostic precision, aid in treatment planning, and facilitate effective prognosis evaluation of glioma patients.

15.
Sci Rep ; 14(1): 19559, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174692

RESUMEN

The study proposed a novel multiple-image encryption scheme using spatial multiplexing under the illumination of a multi-petals structured light. The security is enhanced through the multi-petals structured light with coherent superposition of several vortex beams with different topological charges. Through the system, an image array is formed behind the sub-petals of the complex structured light. Using Fresnel diffraction, each image is encrypted into the ciphertext by the Fibonacci Lucas transform. The multi-petals structured light with different orbital angular momentum can integrate more system parameters as the additional keys resulting in rich key space with improved security level of the cryptosystem. The feasibility and security of the proposed methods are validated through both numerical simulation and experiments. The research has strong and practical applications for three-dimensional information encryption system.

16.
Vaccines (Basel) ; 12(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39066364

RESUMEN

The influenza vaccines currently approved for clinical use mainly include inactivated influenza virus vaccines and live attenuated influenza vaccines (LAIVs). LAIVs have multiple advantages, such as ease of use and strong immunogenicity, and can provide cross-protection. In this study, the M gene of the PR8 virus was mutated as follows (G11T, C79G, G82C, C85G, and C1016A), and a live attenuated influenza virus containing the mutated M gene was rescued and obtained using reverse genetic technology as a vaccine candidate. The replication ability of the rescued virus was significantly weakened in both MDCK cells and mice with attenuated virulence. Studies on immunogenicity found that 1000 TCID50 of mutated PR8 (mPR8) can prime strong humoral and cellular immune responses. Single-dose immunization of 1000 TCID50 mPR8 was not only able to counter the challenge of the homologous PR8 virus but also provided cross-protection against the heterologous H9N2 virus.

17.
Food Chem Toxicol ; 185: 114445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311047

RESUMEN

IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.


Asunto(s)
Chalcona/análogos & derivados , Glucósidos , Enfermedades Mitocondriales , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Adenosina Trifosfato/metabolismo
18.
Materials (Basel) ; 17(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893759

RESUMEN

Slag and fly ash (FA) are mostly used as precursors for the production of alkali-activated materials (AAMs). FA is the waste discharged by power plants, while slag and steel slag (SS) both belong to the iron and steel industry. The effects of SS and FA on the strength, microstructure, and volume stability of alkali-activated slag (AAS) materials with different water glass modulus (Ms) values were comparatively investigated. The results show that adding SS or FA decreases the compressive strength of AAS mortar, and the reduction effect of SS is more obvious at high Ms. SS or FA reduce the non-evaporable water content (Wn) of AAS paste. However, SS increases the long-term Wn of AAS paste at low Ms. The cumulative pore volume and porosity increase after adding SS or FA, especially after adding FA. The hydration products are mainly reticular C-(A)-S-H gels. Adding SS increases the Ca/Si ratio of C-(A)-S-H gel but decreases the Al/Si ratio. However, by mixing FA, the Ca/Si ratio is reduced and the Al/Si ratio is almost unchanged. The incorporation of SS or FA reduces the drying shrinkage of AAS mortar, especially when SS is added. Increasing Ms increases the compressive strength and improves the pore structure, and it significantly increases the drying shrinkage of all samples. This study provides theoretical guidance for the application of steel slag in the alkali-activated slag material.

19.
Int Med Case Rep J ; 17: 359-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651079

RESUMEN

Immune checkpoint inhibitors (ICI) have become a new hope for many patients with advanced cancer by blocking tumor immune escape. Bladder cancer is a common malignant tumor of the urinary tract epithelium that often relapses and metastasizes after surgery, chemotherapy, and radiotherapy. Immunotherapy has dramatically improved patient survival rates and clinical benefits as a new, potentially effective therapy. However, avoidance of various immune-related adverse events (irAEs) remains an implausible idea. ICI-induced myocarditis is different from viral myocarditis, and mortality is still high with the current treatment. We report the case of an 82-year-old female patient with ICI-induced fulminant myocarditis and myasthenia gravis. Although she actively accepted the current mainstream treatment for immune-related myocarditis and myasthenia, she died of heart and respiratory failure. Analyzing and reporting the patient's disease development process and the changes in related indicators may help peers gain a deeper understanding of immune-related adverse events and reduce the mortality of immune-related myocarditis.

20.
Materials (Basel) ; 17(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793325

RESUMEN

The effects of steel slag (SS) and fly ash (FA) on hydration heat, fluidity, setting time and rheological properties of alkali-activated slag (AAS) pastes with different silicate modulus (Ms) values were comparatively investigated. The results show that the incorporation of SS shortens the induction period, increases the cumulative hydration heat, improves the initial fluidity and decreases the setting time at low Ms, but the opposite trend is found at high Ms. FA significantly retards the reaction, reduces the hydration heat, increases the fluidity and prolongs the setting time. The addition of SS or FA reduces the yield stress and plastic viscosity of AAS paste. SS improves the rheological properties of AAS paste more significantly than that of FA at high Ms. The yield stress and plastic viscosity of AAS paste with SS or FA rise with the increasing Ms and decline with the increasing water/binder (w/b) ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA