Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8014): 1158-1164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750355

RESUMEN

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Asunto(s)
Oryza , Inmunidad de la Planta , Proteínas de Plantas , Ubiquitina , Animales , Quitina/metabolismo , Homeostasis , Ligandos , Oryza/enzimología , Oryza/inmunología , Oryza/metabolismo , Oryza/microbiología , Fosforilación , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Fosfoserina/metabolismo , Secuencia Conservada
2.
Small ; 20(34): e2401464, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616766

RESUMEN

Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.

3.
Plant Cell Environ ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39262278

RESUMEN

Plants have developed various resistance mechanisms against herbivorous insects through prolonged coevolution. Plant defence responses can be triggered by specific compounds present in insect saliva. Apyrase, a known enzyme that catalyzes the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP) and inorganic phosphorus, has recently been identified in some herbivorous insects. However, whether insect salivary apyrase induces or inhibits plant responses remains poorly understood. In this study, we identified an apyrase-like protein in the salivary proteome of the fall armyworm, Spodoptera frugiperda, named Sfapyrase. Sfapyrase was primarily expressed in the salivary gland and secreted into plants during insect feeding. Transient expression of Sfapyrase in tobacco and maize enhanced plant resistance and resulted in decreased insect feeding. Knockdown of Sfapyrase through RNA interference led to increased growth and feeding of S. frugiperda. Furthermore, we showed that Sfapyrase activates the jasmonic acid signalling pathway and promotes the synthesis of secondary metabolites, especially benzoxazinoids, thereby enhancing resistance to S. frugiperda. In summary, our findings demonstrated that Sfapyrase acts as a salivary elicitor, inducing maize jasmonic acid defence responses and the production of insect-resistant benzoxazinoids. This study provides valuable insights into plant-insect interactions and offers potential targets for developing innovative insect pest management strategies.

4.
Opt Express ; 32(7): 11665-11672, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571008

RESUMEN

We demonstrated a 978 nm laser diode (LD) side-pumped YSGG/Er:YSGG/YSGG composite crystal with a size of Ф 3 mm × 65 mm and continuous-wave (CW) mode. By optimizing resonator length and output mirror transmittance, a maximum output power of 28.02 W is generated, corresponding to slope efficiency of 17.55% and optical-optical efficiency of 12.29%, respectively. The thermal focal lengths are obtained by resonator stability condition. The laser wavelength is centered near 2.8 µm. Moreover, the beam quality factors M x2/M y2 are fitted to be 8.14 and 7.35, respectively. The above results indicate that a high-performance 2.8 µm CW laser can be achieved by LD side-pumped YSGG/Er:YSGG/YSGG composite crystal with excellent heat dissipation ability, which promotes effectively the development and applications of the mid-infrared solid-state lasers.

5.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745240

RESUMEN

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Artesunato , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Proteínas Quinasas , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Ratones , Femenino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Microscopía Electrónica de Transmisión , Mitofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Hipocampo/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
6.
Surg Endosc ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214880

RESUMEN

BACKGROUND: Gastroesophageal reflux disease is a prevalent condition with significant clinical variability, complicating its evaluation and treatment. The gastroesophageal flap valve is a fundamental evaluation method, but have shown limitations in specificity and reliance on subjective endoscopists' experience. Recent insights suggest that gastroesophageal junction laxity may offer an objective and quantifiable measurement for the presence of gastroesophageal reflux disease. METHODS: This retrospective study analyzed data from 401 patients who underwent comprehensive evaluations, including a symptom questionnaire, endoscopy, pH-impedance monitoring, high-resolution manometry, and treatment directions, between January 1, 2022 and October 31, 2023. Gastroesophageal junction laxity was assessed using a modified approach based on endoscopic image analysis, with the diameter of endoscope as reference to estimate the long diameter of the laxity ring. The independent association of gastroesophageal junction laxity with pathologic acid exposure, esophagitis, and hiatal hernia were assessed by adjusting with age and sex. RESULTS: The mean age was 44.5 ± 5.5 years old, and 49.9% (200/401) were male. The most common symptoms (≥ 1 point) were acid regurgitation (333/401, 83.0%), heartburn (315/401, 78.6%), belching (278/401, 69.3%), bloating (241/401, 60.1%), and globus sensation (241/401, 60.1%). The gastroesophageal junction laxity was significantly associated with pathologic acid exposure, esophagitis, hiatal hernia, and lower esophageal sphincter resting pressure. Notably, with the increase in gastroesophageal junction laxity, the rates of pathologic acid exposure, esophagitis, and hiatal hernia increased gradually, the lower esophageal sphincter resting pressure decreased gradually. The gastroesophageal junction laxity was independent associated with pathologic acid exposure (OR = 2.33, 95%CI 1.77-3.07, p < 0.001), esophagitis (OR = 2.10, 95%CI 1.62-2.73, p < 0.001), and hiatal hernia (high-resolution manometry: OR = 3.39, 95%CI: 2.46-4.67, p < 0.001) (endoscopy: OR = 21.65, 95%CI 11.70-40.06, p < 0.001). CONCLUSION: The gastroesophageal junction laxity was significantly associated with the indicators of pathophysiology in gastroesophageal reflux disease.

7.
Food Microbiol ; 124: 104615, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244367

RESUMEN

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Asunto(s)
Bacterias , Hongos , Hordeum , Microbiota , Enfermedades de las Plantas , Semillas , Hordeum/microbiología , Semillas/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hongos/aislamiento & purificación , Hongos/clasificación , Hongos/genética , China , Cuarentena
8.
Bioprocess Biosyst Eng ; 47(7): 1095-1105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847888

RESUMEN

In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.


Asunto(s)
Bacillus , Biopelículas , Reactores Biológicos , Biopelículas/crecimiento & desarrollo , Bacillus/metabolismo , Bacillus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Medios de Cultivo , Fermentación , Temperatura , Péptidos Cíclicos
9.
J Environ Manage ; 365: 121592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963959

RESUMEN

Methane, either as natural gas or as a resource obtained from various bioprocesses (e.g., digestion, landfill) can be converted to carbon and hydrogen according to. CH4(g)→C(s)+2H2(g)ΔH298K=74.8kJ/mol. Previous research has stressed the growing importance of substituting the high-temperature Steam Methane Reforming (SMR) by a moderate temperature Catalytic Methane Decomposition (CMD). The carbon formed is moreover of nanotube nature, in high industrial demand. To avoid the use of an inert support for the active catalyst species, e.g., Al2O3 for Fe, leading to a progressive contamination of the catalyst by support debris and coking of the catalyst, the present research investigates the use of carbon nanotubes (CNTs) as Fe-support. Average CH4 conversions of 75-85% are obtained at 700 °C for a continuous operation of 40 h. The produced CNT from the methane conversion can be continuously removed from the catalyst bed by carry-over due to its bulk density difference (∼120 kg/m3) with the catalyst itself (∼1500 kg/m3). CNT properties are fully specified. No thermal regeneration of the catalyst is required. A tentative process layout and economic analysis demonstrate the scalability of the process and the very competitive production costs of H2 and CNT.


Asunto(s)
Hierro , Metano , Nanotubos de Carbono , Metano/química , Nanotubos de Carbono/química , Catálisis , Hierro/química , Hidrógeno/química , Temperatura
10.
Opt Express ; 31(14): 23631-23641, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475443

RESUMEN

In this work, we report on investigations of structure, spectroscopic properties and laser performances of, what we believe to be, a novel Er:YGGAG laser crystal. High crystalline quality is proved by an FWHW of XRC of 0.019°. Thermal conductivity of a 30 at.% Er:YGGAG crystal is determined as 4.98 W/(m·K). The refractive index is measured in the range of 400 to 1000 nm and fitting with Sellmeier equation is done. A broad fluorescence emission band is located at 2786∼2819 nm, suggesting that this crystal is favorable to realize tunable and ultrafast laser. Under the pump at 969 nm with a fiber-coupled diode laser, at 400 Hz repetition rate and 600 µs pulse duration, the 30 at.% Er:YGGAG delivered maximum average power of 506 mW with overall optical-to-optical efficiency of 12.4% and slope efficiency of 16.9%. The laser beam quality was characterized by M2 factors of 1.53 and 1.39 in horizontal and vertical directions, respectively.

11.
Opt Express ; 31(22): 36429-36438, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017796

RESUMEN

We demonstrate the thermal, spectroscopy and laser properties of Ho,Pr doped YAP crystal grown successfully by Cz method. The thermal expansion coefficient, thermal conductivity, absorption and emission spectra of Ho,Pr:YAP crystal are investigated in detail. Additionally, the level lifetimes suggest that Pr3+ is a suitable deactivating ion for Ho:YAP crystal. Particularly, the actual laser performance is optimized by doping active ion Ho with high concentrations and introducing deactivated Pr3+, resulting in decreased laser threshold, increased laser output power and slope efficiency. A 3.01 µm laser with output power of 502 mW, slope efficiency of 6.3% and beam quality factors of 1.42/1.43 is achieved in the Ho,Pr:YAP crystal, as far as we know this is the highest ∼3 µm CW laser power realized in Ho3+ doped oxide crystals.

12.
Rev Cardiovasc Med ; 24(11): 314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39076452

RESUMEN

Background: Lipid profiles differ naturally between individuals and between populations. So far, the data relating to non-fasting lipid profiles has been derived predominantly from studies on Western population. The characteristics and clinical significance of non-fasting lipids in Chinese patients with coronary heart disease (CHD) in response to traditional Chinese diets remain poorly understood. Methods: A total of 1022 Chinese CHD patients with coronary artery luminal stenosis > 40% as diagnosed by coronary artery angiography were enrolled in the study. All patients received standard treatment for CHD, including statins. They were divided into an intermediate stenosis group (luminal stenosis 40-70%, n = 486) or a severe stenosis group (luminal stenosis > 70%, n = 536). Their blood lipid profiles were measured in the fasting state, and 4 hours after normal breakfast. All participants were followed up for five years. Major adverse cardiovascular events (MACE) including all-cause death, cardiac death, myocardial infarction, unscheduled coronary revascularization and stroke were recorded. Results: After normal breakfast intake, patients with intermediate or severe stenosis showed an apparent increase in the levels of triglyceride (TG), remnant cholesterol (RC) and Apo (apolipoprotein) A1 compared to the fasting state, but a significant reduction in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), Apo B and Apo E. In addition to the traditional risk factors (older age, male, diabetes and smoking) and coronary artery stenosis, the fasting levels of LDL-C and Apo B, as well as non-fasting levels of HDL-C and Apo A1, were identified as independent predictors of 5-year MACE occurrence by multivariate Cox proportional hazards analysis. Patients in the 1st tertile of the non-fasting HDL-C group ( < 0.86 mmol/L) showed a significantly higher risk of MACE than 3rd tertile ( > 1.07 mmol/L) (1st tertile: 2.786, 95% CI (confidence intervals) [1.808, 4.293], p < 0.001). Conclusions: This prospective observational study found that lipid profiles in either the fasting or non-fasting states were associated with the long-term risk of MACE in Chinese CHD patients. In addition to the fasting LDL-C level, a low non-fasting HDL-C level may also be an independent risk factors for cardiovascular events. Measurement of lipid profiles during the non-fasting state may be feasible for the management of CHD patients in routine clinical practice in China.

13.
Neurochem Res ; 48(11): 3349-3362, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37268752

RESUMEN

Uncovering mechanisms underlying epileptogenesis aids in preventing further epilepsy progression and to lessen seizure severity and frequency. The purpose of this study is to explore the antiepileptogenic and neuroprotective mechanisms of EGR1 in neuron injuries encountered in epilepsy. Bioinformatics analysis was conducted to identify the key genes related to epilepsy. The mice were rendered epileptic using the kainic acid protocol, followed by measurement of seizure severity, high amplitude and frequency, pathological changes of hippocampal tissues and neuron apoptosis. Furthermore, an in vitro epilepsy model was constructed in the neurons isolated from newborn mice, which was then subjected to loss- and gain-of-function investigations, followed by neuron injury and apoptosis assessment. Interactions among EGR1, METTL3, and VIM were analyzed by a series of mechanistic experiments. In the mouse and cell models of epilepsy, VIM was robustly induced. However, its knockdown reduced hippocampal neuron injury and apoptosis. Meanwhile, VIM knockdown decreased inflammatory response and neuron apoptosis in vivo. Mechanistic investigations indicated that EGR1 transcriptionally activated METTL3, which in turn downregulated VIM expression through m6A modification. EGR1 activated METTL3 and reduced VIM expression, thereby impairing hippocampal neuron injury and apoptosis, preventing epilepsy progression. Taken together, this study demonstrates that EGR1 alleviates neuron injuries in epilepsy by inducing METTL3-mediated inhibition of VIM, which provides clues for the development of novel antiepileptic treatments.


Asunto(s)
Epilepsia , Ratones , Animales , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia/metabolismo , Convulsiones/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neuronas/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/metabolismo , Hipocampo/metabolismo
14.
Nitric Oxide ; 136-137: 12-23, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182786

RESUMEN

AIM: Increasing evidence has proposed that mitochondrial abnormalities may be an important factor contributing to the development of heart failure with preserved ejection fraction (HFpEF). Hydrogen sulfide (H2S) has been suggested to play a pivotal role in regulating mitochondrial function. Therefore, the present study was designed to explore the protective effect of H2S on mitochondrial dysfunction in a multifactorial mouse model of HFpEF. METHODS: Wild type, 8-week-old, male C57BL/6J mice or cardiomyocyte specific-Cse (Cystathionine γ-lyase, a major H2S-producing enzyme) knockout mice (CSEcko) were given high-fat diet (HFD) and l-NAME (an inhibitor of constitutive nitric oxide synthases) or standardized chow. After 4 weeks, mice were randomly administered with NaHS (a conventional H2S donor), ZLN005 (a potent transcriptional activator of PGC-1α) or vehicle. After additional 4 weeks, echocardiogram and mitochondrial function were evaluated. Expression of PGC-1α, NRF1 and TFAM in cardiomyocytes was assayed by Western blot. RESULTS: Challenging with HFD and l-NAME in mice not only caused HFpEF but also inhibited the production of endogenous H2S in a time-dependent manner. Meanwhile the expression of PGC-1α and mitochondrial function in cardiomyocytes were impaired. Supplementation with NaHS not only upregulated the expression of PGC-1α, NRF1 and TFAM in cardiomyocytes but also restored mitochondrial function and ultrastructure, conferring an obvious improvement in cardiac diastolic function. In contrast, cardiac deletion of CSE gene aggravated the inhibition of PGC-1α-NRF1-TFAM pathway, mitochondrial abnormalities and diastolic dysfunction. The deleterious effect observed in CSEcko HFpEF mice was partially counteracted by pre-treatment with ZLN005 or supplementation with NaHS. CONCLUSION: Our findings have demonstrated that H2S ameliorates left ventricular diastolic dysfunction by restoring mitochondrial abnormalities via upregulating PGC-1α and its downstream targets NRF1 and TFAM, suggesting the therapeutic potential of H2S supplementation in multifactorial HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Ratones , Masculino , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , NG-Nitroarginina Metil Éster/farmacología , Volumen Sistólico , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Cistationina gamma-Liasa/metabolismo
15.
Inorg Chem ; 62(42): 17333-17340, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37823856

RESUMEN

Birefringent crystals can modulate and detect the polarization of light and are important optical functional materials. The birefringence is positively correlated to the anisotropy of the structure. By partially substituting sulfate anion with large electronegative fluorine in the parent compound Y2(SO4)3·8H2O, a new fluorinated rare-earth sulfate YSO4F·H2O with enhanced anisotropy was achieved. YSO4F·H2O features a dense 3D structure constructed by the polarizable [YOF] polyhedra and [SO4] tetrahedra. The diffuse reflectance spectrum reveals that it has a short UV absorption edge of below 200 nm. The substitution of the F- ion enhances the optical anisotropy, making the material exhibit an enhanced birefringence (0.0357 at 546 nm), which is 5.1 times that of the parent compound and is also larger than most deep-UV birefringent sulfates. It is expected that this work may shed useful insights in the exploration of deep-UV birefringent materials with enhanced optical performances..

16.
Int J Hyperthermia ; 40(1): 2249274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751897

RESUMEN

OBJECTIVE: To investigate the factors affecting the efficacy of ultrasound (US)-guided percutaneous microwave ablation (PMWA) for adenomyosis with abnormal uterine bleeding (AUB-A). METHODS: Baseline data of patients with AUB-A who underwent US-guided PMWA treatment between October 2020 and October 2021, including demography characteristics, laboratory and imaging examination results were retrospectively analyzed. 3D reconstruction of magnetic resonance imaging (MRI) was applied to quantitatively assess the local treatment responses, including ratio of non-perfusion volume to adenomyosis volume (NPVr), ablation rate of the endometrial-myometrial junction (EMJ), and surface area (SA) of the ablated part of the EMJ. Patients were followed up at 3, 6, and 12 months after treatment, and divided into two groups: group with complete relief (CR), and group with partial relief (PR) or no relief (NR). Data were compared between them. RESULTS: Thirty-one patients were analyzed with a mean age of 38.7 ± 6.8 years (range: 24-48): 48.4% (15/31), 63.3% (19/30), and 65.5% (19/29) achieved CR at 3, 6, and 12 months, respectively. In univariate analysis, compared with the PR/NR group, serum CA125 levels were significantly lower in CR group at 3 months, while ablation rates of EMJ and SA of the ablated part of the EMJ were significantly higher at the three time points. Other baseline characteristics and NPVr did not differ between the two groups. CONCLUSION: Baseline CA125 and ablation rate of the EMJ and SA of the ablated part of the EMJ are associated with the outcome of AUB-A patients after US-guided PMWA treatment.


Asunto(s)
Adenomiosis , Humanos , Femenino , Adulto , Persona de Mediana Edad , Adenomiosis/complicaciones , Adenomiosis/diagnóstico por imagen , Adenomiosis/cirugía , Microondas/uso terapéutico , Estudios Retrospectivos , Ultrasonografía Intervencional , Hemorragia Uterina
17.
J Basic Microbiol ; 63(2): 179-189, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36515292

RESUMEN

Bacillus subtilis, as a biocontrol bacterium, possess a variety of biological functions and the capacity to control plant pathogens. Iturin A is a biosurfactant with broad-spectrum antifungal activity produced by fermentation of B. subtilis. In this study, the dynamic parameters of solid-state fermentation (SSF) and submerged fermentation (SMF) of Bacillus velezensis ND were compared, and a method for producing iturin A with a yield of 12.46 g/kg utilizing SSF was proposed. It has significant advantages over SMF and has the highest yield of all previously reported studies. B. velezensis ND also contains protease activity, cellulase activity, iron-carrying activity, the ability to synthesis 3-indoleacetic acid (IAA), fixation nitrogen, and degrade phosphorus. In cotton pot experiments, it can effectively increase cotton growth and minimize Verticillium wilt. This strain's superior fermentation efficiency, biological function, and biocontrol ability are sufficient to demonstrate its promise for the development and use of biocontrol agents.


Asunto(s)
Bacillus , Agentes de Control Biológico , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/metabolismo , Péptidos Cíclicos
18.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139198

RESUMEN

ß-Farnesene is an advanced molecule with promising applications in agriculture, the cosmetics industry, pharmaceuticals, and bioenergy. To supplement the shortcomings of rational design in the development of high-producing ß-farnesene strains, a Metabolic Pathway Design-Fermentation Test-Metabolomic Analysis-Target Mining experimental cycle was designed. In this study, by over-adding 20 different amino acids/nucleobases to induce fluctuations in the production of ß-farnesene, the changes in intracellular metabolites in the ß-farnesene titer-increased group were analyzed using non-targeted metabolomics. Differential metabolites that were detected in each experimental group were selected, and their metabolic pathways were located. Based on these differential metabolites, targeted strain gene editing and culture medium optimization were performed. The overexpression of the coenzyme A synthesis-related gene pantothenate kinase (PanK) and the addition of four mixed water-soluble vitamins in the culture medium increased the ß-farnesene titer in the shake flask to 1054.8 mg/L, a 48.5% increase from the initial strain. In the subsequent fed-batch fermentation, the ß-farnesene titer further reached 24.6 g/L. This work demonstrates the tremendous application value of metabolomics analysis for the development of industrial recombinant strains and the optimization of fermentation conditions.


Asunto(s)
Sesquiterpenos , Yarrowia , Yarrowia/genética , Fermentación , Sesquiterpenos/metabolismo , Redes y Vías Metabólicas , Ingeniería Metabólica
19.
J Environ Manage ; 346: 118999, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751646

RESUMEN

The catalytic CH4 decomposition (CMD) over Fe-based catalyst is an economical and environmentally friendly way to produce Cox-free H2 and carbon nanotubes (CNTs). The Fe-loading was varied to study its influence on the catalytic performance. The highest H2 yield (82.25%) was obtained with a 12% Fe content where the activity of the catalyst did not decrease for 3 h on-stream. A higher Fe content causes the Fe dispersion to decrease, resulting in a reduced available surface area of active sites. Different techniques were used to characterise the fresh and spent catalysts i.e., ICP-AES, XRD, H2-TPR, SEM, TEM, and Raman spectroscopy. Plotting kinetic results as a function of 1/T, defines two different conversion ranges, being reaction rate controlled at low temperature and diffusion rate controlled at high temperature. For the reaction rate controlled regime, the Arrhenius equation provides an activation energy of 101.26 kJ/mol (Ea) and a pre-exponential factor of 393 kmol/s (A).

20.
Appl Microbiol Biotechnol ; 106(8): 2855-2868, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35445856

RESUMEN

Poly(ß-L-malic acid) (PMLA) is a water-soluble, biodegradable, and biocompatible polymer with broad prospective applications and can be hydrolyzed to produce widely used acidulant L-malic acid. In order to meet an increasing demand of PMLA, we employed two effective cell-recycling strategies to produce PMLA from raw cassava hydrolysate by Aureobasidium pullulans ZD-3d. In fed-batch fermentation with raw cassava hydrolysate, 101.9 g/L PMLA was obtained with the productivity and yield of 0.77 g/L/h and 0.40 g/g, respectively. Further, three times of membrane filtration-based cell recycling fermentation was carried out, with a high productivity and yield of 1.04-1.64 g/L/h and 0.5-0.84 g/g achieved, respectively. While harnessing centrifugation-based cell recycling fermentation for five times, the productivity and yield approached 0.98-1.76 g/L/h and 0.78-0.86 g/g, respectively. To our knowledge, the processes showed the highest average PMLA productivity compared with others using low-cost biomass, which offered efficient and economical alternatives for PMLA production. KEY POINTS: • PMLA production from raw cassava hydrolysate by Aureobasidium pullulans was studied • High PMLA productivity and yield were obtained via two cell recycling strategies • The highest average PMLA productivity from low-cost biomass to date was achieved.


Asunto(s)
Manihot , Aureobasidium , Fermentación , Malatos/metabolismo , Manihot/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA