Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7898): 606-611, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197620

RESUMEN

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión
2.
Arterioscler Thromb Vasc Biol ; 44(1): 254-270, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916416

RESUMEN

BACKGROUND: Hyperglycemia-a symptom that characterizes diabetes-is highly associated with atherothrombotic complications. However, the underlying mechanism by which hyperglycemia fuels platelet activation and arterial thrombus formation is still not fully understood. METHODS: The profiles of polyunsaturated fatty acid metabolites in the plasma of patients with diabetes and healthy controls were determined with targeted metabolomics. FeCl3-induced carotid injury model was used to assess arterial thrombus formation in mice with endothelial cell (EC)-specific YAP (yes-associated protein) deletion or overexpression. Flow cytometry and clot retraction assay were used to evaluate platelet activation. RNA sequencing and multiple biochemical analyses were conducted to unravel the underlying mechanism. RESULTS: The plasma PGE2 (prostaglandin E2) concentration was elevated in patients with diabetes with thrombotic complications and positively correlated with platelet activation. The PGE2 synthetases COX-2 (cyclooxygenase-2) and mPGES-1 (microsomal prostaglandin E synthase-1) were found to be highly expressed in ECs but not in other type of vessel cells in arteries from both patients with diabetes and hyperglycemic mice, compared with nondiabetic individuals and control mice, respectively. A combination of RNA sequencing and ingenuity pathway analyses indicated the involvement of YAP signaling. EC-specific deletion of YAP limited platelet activation and arterial thrombosis in hyperglycemic mice, whereas EC-specific overexpression of YAP in mice mimicked the prothrombotic state of diabetes, without affecting hemostasis. Mechanistically, we found that hyperglycemia/high glucose-induced endothelial YAP nuclear translocation and subsequently transcriptional expression of COX-2 and mPGES-1 contributed to the elevation of PGE2 and platelet activation. Blockade of EP3 (prostaglandin E receptor 3) activation by oral administration of DG-041 reversed the hyperactivity of platelets and delayed thrombus formation in both EC-specific YAP-overexpressing and hyperglycemic mice. CONCLUSIONS: Collectively, our data suggest that hyperglycemia-induced endothelial YAP activation aggravates platelet activation and arterial thrombus formation via PGE2/EP3 signaling. Targeting EP3 with DG-041 might be therapeutic for diabetes-related thrombosis.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Trombosis , Animales , Humanos , Ratones , Plaquetas/metabolismo , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Ratones Obesos , Trombosis/genética , Trombosis/metabolismo
3.
Mol Ther ; 32(4): 1033-1047, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38341613

RESUMEN

As the world continues to confront severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV) is also causing severe respiratory illness in millions of infants, elderly individuals, and immunocompromised people globally. Exacerbating the situation is the fact that co-infection with multiple viruses is occurring, something which has greatly increased the clinical severity of the infections. Thus, our team developed a bivalent vaccine that delivered mRNAs encoding SARS-CoV-2 Omicron spike (S) and RSV fusion (F) proteins simultaneously, SF-LNP, which induced S and F protein-specific binding antibodies and cellular immune responses in BALB/c mice. Moreover, SF-LNP immunization effectively protected BALB/c mice from RSV infection and hamsters from SARS-CoV-2 Omicron infection. Notably, our study pointed out the antigenic competition problem of bivalent vaccines and provided a solution. Overall, our results demonstrated the potential of preventing two infectious diseases with a single vaccine and provided a paradigm for the subsequent design of multivalent vaccines.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Ratones , Lactante , Cricetinae , Animales , Anciano , Vacunas de ARNm , Vacunas Combinadas , Anticuerpos Antivirales , Vacunas contra Virus Sincitial Respiratorio/genética , Proteínas Virales de Fusión/genética , COVID-19/prevención & control , SARS-CoV-2/genética , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Neutralizantes
4.
Angew Chem Int Ed Engl ; : e202404978, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697945

RESUMEN

Integrating aggregation-induced emission (AIE) into thermally activated delayed fluorescence (TADF) emitters holds great promise for the advancement of highly efficient organic light emitting diodes (OLEDs). Despite recent advancements, a thorough comprehension of the underlying mechanisms remains imperative for the practical application of such materials. In this work, we introduce a novel approach aimed at modulating the TADF process by manipulating dynamic processes in excited states through aggregation effect. Our findings reveal that aggregation not only enhances both prompt and delayed fluorescence simultaneously but also imposes constraints on molecular reorientation. This constraint reinforces spin-orbit coupling and reduces the energy gap between singlets and triplets. These insights deepen our understanding of the fundamental mechanisms governing the aggregation effect on TADF materials and provide valuable guidance for the design of high-efficiency photoluminescent materials.

5.
Small ; 19(30): e2301071, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37069773

RESUMEN

With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.

6.
J Chem Phys ; 159(21)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38047513

RESUMEN

Prolonging the lifetime of photoinduced hot carriers in lead-halide perovskite quantum dots (QDs) is highly desirable because it can help improve the photovoltaic conversion efficiency. Ligand engineering has recently become a promising strategy to achieve this; nevertheless, mechanistic studies in this field remain limited. Herein, we propose a new scenario of ligand engineering featuring Pb2+/Br- site-selective capping on the surface of CsPbBr3 QDs. Through joint observations of temperature-dependent photoluminescence, ultrafast transient absorption, and Raman spectroscopy of the two contrasting model systems of CsPbBr3 QDs (i.e., capping with organic ligand only vs hybrid organic/inorganic ligands), we reveal that the phononic regulation of Pb-Br stretching at the Br-site (relative to Pb-site) leads to a larger suppression of charge-phonon coupling due to a stronger polaronic screening effect, thereby more effectively retarding the hot-carrier cooling process. This work opens a new route for the manipulation of hot-carrier cooling dynamics in perovskite systems via site-selective ligand engineering.

7.
Ecotoxicol Environ Saf ; 256: 114903, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37054473

RESUMEN

BACKGROUND: Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in a variety of diseases. However, the specific functions of m6A in CdCl2-induced kidney injury remain unclear. OBJECTIVE: Here, we investigate a transcriptome-wide map of m6A modifications and explore the effects of m6A on Cd-induced kidney injury. MATERIALS AND METHODS: The rat kidney injury model was constructed by subcutaneous injection of CdCl2 (0.5, 1.0, and 2.0 mg/kg). The m6A levels were measured by colorimetry. The level of expression of m6A-related enzymes were detected by reverse transcription quantitative real-time PCR analysis. Transcriptome-wide m6A methylome in CdCl2 (2.0 mg/kg) and the control group were profiled by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Subsequently, the sequencing data were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), while gene set enrichment analysis (GSEA) confirmed the functional enrichment pathways of sequencing genes. In addition, a protein-protein interaction (PPI) network was applied to select hub genes. RESULTS: The levels of m6A and m6A regulators (METTL3, METTL14, WTAP, YTHDF2) were significantly increased in CdCl2 groups. We identified a total of 2615 differentially expressed m6A peaks, 868 differentially expressed genes and 200 genes with significant changes in both m6A modification and gene expression levels. GO, KEGG, and GSEA analyses indicated that these genes were mainly enriched in inflammation and metabolism-related pathways such as in IL-17 signaling and fatty acid metabolism. According the result of the conjoint analysis, we identified the top ten hub genes (Fos, Hsp90aa1, Gata3, Fcer1g, Cftr, Cspg4, Atf3, Cdkn1a, Ptgs2, and Npy) which may be regulated by m6A and involve in CdCl2-induced kidney damage. CONCLUSION: This study established a m6A transcriptional map in a CdCl2-induced kidney injury model and suggested that m6A may affect CdCl2 induced kidney injury via regulated the inflammation and metabolism related gene.


Asunto(s)
Cadmio , Transcriptoma , Animales , Ratas , Metilación , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Riñón
8.
Opt Express ; 30(8): 13238-13251, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472941

RESUMEN

Structured illumination microscopy (SIM), a super-resolution technology, has a wide range of applications in life sciences. In this study, we present an electro-optic high-speed phase-shift super-resolution microscopy imaging system including 2D SIM, total internal reflection fluorescence-SIM, and 3D SIM modes. This system uses galvanometers and an electro-optic modulator to flexibly and quickly control the phase and direction of structured illumination patterns. Moreover, its design consists of precise timing for improved acquisition speed and software architecture for real-time reconstruction. The highest acquisition rate achieved was 151 frames/s, while the highest real-time super-resolution reconstruction frame rate achieved was over 25 frames/s.

9.
Environ Sci Technol ; 56(18): 13254-13263, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36087060

RESUMEN

2-Mercaptobenzothiazole (MBT) is an industrial chemical widely used for rubber products, corrosion inhibitors, and polymer materials with multiple environmental and exposure pathways. A growing body of evidence suggests its potential bladder cancer (BC) risk as a public health concern; however, the molecular mechanism remains poorly understood. Herein, we demonstrate the activation of the aryl hydrocarbon receptor (AhR) by MBT and reveal key events in carcinogenesis associated with BC. MBT alters conformational changes of AhR ligand binding domain (LBD) as revealed by 500 ns molecular dynamics simulations and activates AhR transcription with upregulation of AhR-target genes CYP1A1 and CYP1B1 to approximately 1.5-fold. MBT upregulates the expression of MMP1, the cancer cell metastasis biomarker, to 3.2-fold and promotes BC cell invasion through an AhR-mediated manner. MBT is further revealed to induce differentially expressed genes (DEGs) most enriched in cancer pathways by transcriptome profiling. The exposure of MBT at environmentally relevant concentrations induces BC risk via AhR signaling disruption, transcriptome aberration, and malignant cell metastasis. A machine learning-based model with an AUC value of 0.881 is constructed to successfully predict 31 MBT analogues. Overall, we provide molecular insight into the BC risk of MBT and develop an effective tool for rapid screening of AhR agonists.


Asunto(s)
Receptores de Hidrocarburo de Aril , Neoplasias de la Vejiga Urinaria , Benzotiazoles , Biomarcadores , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Ligandos , Aprendizaje Automático , Metaloproteinasa 1 de la Matriz/metabolismo , Simulación de Dinámica Molecular , Receptores de Hidrocarburo de Aril/metabolismo , Goma
10.
Environ Sci Technol ; 56(1): 480-490, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927421

RESUMEN

Thousands of contaminants are used worldwide and eventually released into the environment, presenting a challenge of health risk assessment. The identification of key toxic pathways and characterization of interactions with target biomacromolecules are essential for health risk assessments. The adverse outcome pathway (AOP) incorporates toxic mechanisms into health risk assessment by emphasizing the relationship among molecular initiating events (MIEs), key events (KEs), and adverse outcome (AO). Herein, we attempted the use of AOP to decipher the toxic effects of 2,6-di-tert-butylphenol (2,6-DTBP) and its para-quinone metabolite 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTBQ) based on integrated transcriptomics, molecular modeling, and cell-based assays. Through transcriptomics and quantitative real-time PCR validation, we identified retinoic acid receptor ß (RARß) as the key target biomacromolecule. The epigenetic analysis and molecular modeling revealed RARß interference as one MIE, including DNA methylation and conformational changes. In vitro assays extended subsequent KEs, including altered protein expression of p-Erk1/2 and COX-2, and promoted cancer cell H4IIE proliferation and metastasis. These toxic effects altogether led to carcinogenic risk as the AO of 2,6-DTBP and 2,6-DTBQ, in line with chemical carcinogenesis identified from transcriptome profiling. Overall, our simplified AOP network of 2,6-DTBP and 2,6-DTBQ facilitates relevant health risk assessment.


Asunto(s)
Carcinógenos , Quinonas , Benzoquinonas/toxicidad , Carcinogénesis , Carcinógenos/toxicidad , Humanos , Fenoles , Receptores de Ácido Retinoico
11.
J Chem Phys ; 156(3): 034701, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35065564

RESUMEN

Element doping can have a profound impact on the photoelectrochemical properties of quantum dots (QDs); nevertheless, the hitherto known information in this regard is mainly from the steady-state characterizations and remains lacking input from the dynamics perspective. Herein, we present a systematic scrutiny of the element doping-induced effects in Zn-doped CdTe QDs. By means of steady-state/time-resolved/temperature-dependent photoluminescence spectroscopy and ultrafast transient absorption spectroscopy, we reveal that the slight Zn-doping in CdTe QDs can greatly affect the involved carrier relaxation dynamics through a density-of-state modification for both near-band-edge and localized surface trap states. Furthermore, such slight doping is found to be quite significant in modulating the photoreduction efficiency (of particular relation to the localized surface trap states) as well as altering the involved relaxation/reaction activation energy and phonon effect in this QDs system. This work enriches our fundamental understanding of the element doping-induced surface/interface effects, from the dynamics perspective in particular, and, hence, offers helpful guidance for QDs-based photoelectrochemical design and optimization.

12.
Angew Chem Int Ed Engl ; 61(39): e202209486, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862112

RESUMEN

Ruthenium (Ru) has been theoretically considered a viable alkaline hydrogen evolution reaction electrocatalyst due to its fast water dissociation kinetics. However, its strong affinity to the adsorbed hydroxyl (OHad ) blocks the active sites, resulting in unsatisfactory performance during the practical HER process. Here, we first reported a competitive adsorption strategy for the construction of SnO2 nanoparticles doped with Ru single-atoms supported on carbon (Ru SAs-SnO2 /C) via atomic galvanic replacement. SnO2 was introduced to regulate the strong interaction between Ru and OHad by the competitive adsorption of OHad between Ru and SnO2 , which alleviated the poisoning of Ru sites. As a consequence, the Ru SAs-SnO2 /C exhibited a low overpotential at 10 mA cm-2 (10 mV) and a low Tafel slope of 25 mV dec-1 . This approach provides a new avenue to modulate the adsorption strength of active sites and intermediates, which paves the way for the development of highly active electrocatalysts.

13.
Angew Chem Int Ed Engl ; 61(40): e202206205, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35962463

RESUMEN

Ubiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin-like protein Nedd8) protein tools.


Asunto(s)
COVID-19 , Péptido Hidrolasas , Animales , Catálisis , Citocinas/metabolismo , Interferones , Lisina , Proteína NEDD8 , Péptido Hidrolasas/metabolismo , Proteómica , SARS-CoV-2 , Ubiquitinas/química
14.
Environ Sci Technol ; 55(1): 200-208, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33290056

RESUMEN

Nitrous acid (HONO) plays an important role in the budget of hydroxyl radical (•OH) in the atmosphere. Vehicular emissions are a crucial primary source of atmospheric HONO, yet remain poorly investigated, especially for diesel trucks. In this study, we developed a novel portable online vehicular HONO exhaust measurement system featuring an innovative dilution technique. Using this system coupled with a chassis dynamometer, we for the first time investigated the HONO emission characteristics of 17 light-duty diesel trucks (LDDTs) and 16 light-duty gasoline vehicles in China. Emissions of HONO from LDDTs were found to be significantly higher than previous studies and gasoline vehicles tested in this study. The HONO emission factors of LDDTs decrease significantly with stringent control standards: 1.85 ± 1.17, 0.59 ± 0.25, and 0.15 ± 0.14 g/kg for China III, China IV, and China V, respectively. In addition, we found poor correlations between HONO and NOx emissions, which indicate that using the ratio of HONO to NOx emissions to infer HONO emissions might lead to high uncertainty of HONO source budget in previous studies. Lastly, the HONO emissions are found to be influenced by driving conditions, highlighting the importance of conducting on-road measurements of HONO emissions under real-world driving conditions. More direct measurements of the HONO emissions are needed to improve the understanding of the HONO emissions from mobile and other primary sources.


Asunto(s)
Contaminantes Atmosféricos , Ácido Nitroso , Contaminantes Atmosféricos/análisis , China , Gases , Gasolina/análisis , Vehículos a Motor , Ácido Nitroso/análisis , Emisiones de Vehículos/análisis
15.
J Environ Manage ; 299: 113649, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34474259

RESUMEN

Panting protected forests to increase soil carbon sequestration is an effective means of reducing carbon emissions. Soil organic carbon (SOC) decomposition is one of the main indicators of soil carbon sequestration. However, SOC decomposition and its influencing factors in protected forests have not been fully characterized, especially in coastal zones. In this paper, coastal zone protected forest stands composed of Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP) and mixed PTP and QAC (MF) were selected as the research objects. The trends of the SOC decomposition rate were characterized by the beta (ß) value, and the influencing factors were further explored with structural equation models. The results were as follows: The SOC content decreased from leaf to litter and then to the soil profile at all sites, while the δ13C value increased. The ß value ranged from -3.12 to -5.76, with an average of -3.81. The ß value was positively correlated with the diversity and richness of soil bacteria, supporting the hypothesis that the increase in δ13C with depth was mainly caused by isotope fractionation in the process of microbial SOC decomposition. The structural equation model showed that nitrogen and the availability of nitrogen have a strong ability to explain the value of ß, which indicates that nitrogen-based edaphic variables play an important role in affecting SOC decomposition. The SOC decomposition rate in PTP was higher than that in QAC and MF. The results of this study indicate that the prediction of SOC decomposition based on the ß value is suitable for coastal zone protected forests. The incorporation of edaphic variables into global carbon cycle models may enhance the predictions of SOC dynamics in coastal zone protected forests.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Isótopos de Carbono , Secuestro de Carbono , China , Bosques
16.
Angew Chem Int Ed Engl ; 60(11): 6160-6169, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289198

RESUMEN

Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.

17.
Opt Express ; 28(3): 3000-3008, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32121976

RESUMEN

We investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size. Further analysis yields that the inhomogeneous polarization state of RPB can be utilized to readily control the bonding type of plasmon modes and distribute the underlying local field confined in the gap (the periphery) of the dimer, leading to a positive (negative) optical binding force. Our findings provide a clear strategy to engineer optical binding forces via changes in device geometry and its illumination profile. Thus, we envision a significant role for our device in emerging nanophotonics structures.

18.
Environ Sci Technol ; 53(13): 7532-7542, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31125208

RESUMEN

Solar reflective cool roofs and walls can be used to mitigate the urban heat island effect. While many past studies have investigated the climate impacts of adopting cool surfaces, few studies have investigated their effects on air pollution, especially on particulate matter (PM). This research for the first time investigates the influence of widespread deployment of cool walls on urban air pollutant concentrations, and systematically compares cool wall to cool roof effects. Simulations using a coupled meteorology-chemistry model (WRF-Chem) for a representative summertime period show that cool walls and roofs can reduce urban air temperatures, wind speeds, and planetary boundary heights in the Los Angeles Basin. Consequently, increasing wall (roof) albedo by 0.80, an upper bound scenario, leads to maximum daily 8-h average ozone concentration reductions of 0.35 (0.83) ppbv in Los Angeles County. However, cool walls (roofs) increase daily average PM2.5 concentrations by 0.62 (0.85) µg m-3. We investigate the competing processes driving changes in concentrations of speciated PM2.5. Increases in primary PM (elemental carbon and primary organic aerosols) concentrations can be attributed to reductions in ventilation of the Los Angeles Basin. Increases in concentrations of semivolatile species (e.g., nitrate) are mainly driven by increases in gas-to-particle conversion due to reduced atmospheric temperatures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Los Angeles , Material Particulado
19.
Environ Sci Technol ; 52(19): 11188-11197, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30157379

RESUMEN

This study for the first time assesses the influence of employing solar reflective "cool" walls on the urban energy budget and summertime climate of the Los Angeles basin. We systematically compare the effects of cool walls to cool roofs, a heat mitigation strategy that has been widely studied and employed, using a consistent modeling framework (the Weather Research and Forecasting model). Adoption of cool walls leads to increases in urban grid cell albedo that peak in the early morning and late afternoon, when the ratio of solar radiation onto vertical walls versus horizontal surfaces is at a maximum. In Los Angeles County, daily average increase in grid cell reflected solar radiation from increasing wall albedo by 0.80 is 9.1 W m-2, 43% of that for increasing roof albedo. Cool walls reduce canyon air temperatures in Los Angeles by 0.43 K (daily average), with the peak reduction (0.64 K) occurring at 09:00 LST and a secondary peak (0.53 K) at 18:00 LST. Per 0.10 wall (roof) albedo increase, cool walls (roofs) can reduce summertime daily average canyon air temperature by 0.05 K (0.06 K). Results reported here can be used to inform policies on urban heat island mitigation or climate change adaptation.


Asunto(s)
Frío , Calor , Los Angeles , Temperatura , Tiempo (Meteorología)
20.
Environ Sci Technol ; 52(11): 6380-6389, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29687709

RESUMEN

Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM), and a multiregional input-output analysis (MRIO). BC was physically transported (i.e., atmospheric transport) from western to eastern countries in the midlatitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia was also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America, and East Asia (0.01 Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , África , Asia , Carbono , Europa (Continente) , Asia Oriental , Humanos , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA