Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 95(10): 1283-1288, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28727921

RESUMEN

Although plasma levels of lysophosphatidylglycerol (LPG) are increased in hypertension, its role in the pathogenesis of vascular defects is not clear. In view of the importance of Ca2+ overload in causing vascular smooth muscle (VSM) dysfunction, the action of LPG on [Ca2+]i in cultured A10 VSM cell line was examined by using Fura 2-AM acetoxymethyl ester technique. LPG was found to induce a concentration-dependent increase in [Ca2+]i in VSM cells. This change was dependent both on the extracellular and intracellular Ca2+ sources, as it was reduced by 30% by EGTA, an extracellular Ca2+ chelator, and 70% by thapsigargin, a sarcoplasmic reticulum (SR) Ca2+-pump inhibitor. However the increase in [Ca2+]i due to LPG was not altered by caffeine or ryanodine, which affect Ca2+-release through the ryanodine receptors in the SR. On the other hand, LPG-induced change in [Ca2+]i was suppressed by 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate, a phospholipase C (PLC) inhibitor, as well as by xestospongin and 2-aminoethoxydiphenyl borate, two inositol trisphosphate (IP3) receptor inhibitors in the SR. These observations support the view that LPG-induced increase in [Ca2+]i in VSM cells is mainly a result of Ca2+ release from Ca2+ pool in the SR through PLC/IP3-sensitive signal transduction mechanism. Furthermore, it is suggested that the elevated level of LPG may induce intracellular Ca2+ overload and thus play a critical role in the development of vascular abnormalities.


Asunto(s)
Calcio/metabolismo , Lisofosfolípidos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Fosfolipasas de Tipo C/metabolismo
2.
Neural Regen Res ; 11(11): 1857-1864, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28123433

RESUMEN

Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cortical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inflammation, neurotropic factors, and cellular stress response. Specifically, we clarify the procedures and detailed information regarding cortical spreading depression-induced preconditioning and build a foundation for more comprehensive investigations in the field of neural regeneration and clinical application in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA