Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(10): 4088-4104, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35863056

RESUMEN

Plants utilize localized cell-surface and intracellular receptors to sense microbes and activate the influx of calcium, which serves as an important second messenger in eukaryotes to regulate cellular responses. However, the mechanisms through which plants decipher calcium influx to activate immune responses remain largely unknown. Here, we show that pathogen-associated molecular patterns (PAMPs) trigger calcium-dependent phosphorylation of CAM-BINDING PROTEIN 60-LIKE G (CBP60g) in Arabidopsis (Arabidopsis thaliana). CALCIUM-DEPENDENT PROTEIN KINASE5 (CPK5) phosphorylates CBP60g directly, thereby enhancing its transcription factor activity. TOUCH 3 (TCH3) and its homologs CALMODULIN (CAM) 1/4/6 and CPK4/5/6/11 are required for PAMP-induced CBP60g phosphorylation. TCH3 interferes with the auto-inhibitory region of CPK5 and promotes CPK5-mediated CBP60g phosphorylation. Furthermore, CPKs-mediated CBP60g phosphorylation positively regulates plant resistance to soil-borne fungal pathogens. These lines of evidence uncover a novel calcium signal decoding mechanism during plant immunity through which TCH3 relieves auto-inhibition of CPK5 to phosphorylate and activate CBP60g. The findings reveal cooperative interconnections between different types of calcium sensors in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio , Calmodulina/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Proteínas Quinasas , Suelo , Factores de Transcripción/metabolismo
2.
Mol Plant Microbe Interact ; 37(5): 459-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597923

RESUMEN

Citrus Huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CLas), is one of the most destructive citrus diseases worldwide, and defense-related Citrus sinensis gene resources remain largely unexplored. Calcium signaling plays an important role in diverse biological processes. In plants, a few calcium-dependent protein kinases (CDPKs/CPKs) have been shown to contribute to defense against pathogenic microbes. The genome of C. sinensis encodes dozens of CPKs. In this study, the role of C. sinensis calcium-dependent protein kinases (CsCPKs) in C. sinensis defense was investigated. Silencing of CsCPK6 compromised the induction of defense-related genes in C. sinensis. Expression of a constitutively active form of CsCPK6 (CsCPK6CA) triggered the activation of defense-related genes in C. sinensis. Complementation of CsCPK6 rescued the defense-related gene induction in an Arabidopsis thaliana cpk4/11 mutant, indicating that CsCPK6 carries CPK activity and is capable of functioning as a CPK in Arabidopsis. Moreover, an effector derived from CLas inhibits defense induced by the expression of CsCPK6CA and autophosphorylation of CsCPK6, which suggests the involvement of CsCPK6 and calcium signaling in defense. These results support a positive role for CsCPK6 in C. sinensis defense against CLas, and the autoinhibitory regulation of CsCPK6 provides a potential genome-editing target for improving C. sinensis defense. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Citrus sinensis , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Citrus sinensis/genética , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Resistencia a la Enfermedad/genética , Liberibacter/genética , Liberibacter/fisiología
3.
Chemistry ; 30(15): e202303688, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38102885

RESUMEN

Covalent organic frameworks (COFs) are porous organic materials with well-defined and uniform structure. The material is an excellent candidate as a solid adsorbent for iodine adsorption. In the present study, we report the synthesis of COF with porphyrin moiety, TF-TA-COF, by solvothermal reaction, which was characterized by XRD, solid-state 13 C NMR, IR, TGA, and nitrogen adsorption-desorption analysis. TF-TA-COF showed a high specific surface area of 443 m2 g-1 , and exhibited good adsorption performance for iodine vapor, with an adsorption capacity of 2.74 g g-1 . XPS and Raman spectrum indicated that a hybrid of physisorption and chemisorption took place between host COF and iodine molecules. The electric properties of iodine-loaded TF-TA-COF were also studied. After doped with iodine, the conductivity of the material increased by more than 5 orders of magnitude. The photoconductivity of I2 -doped COF was also studied and TF-TA-COF showed doping-enhanced photocurrent generation.

4.
J Nat Prod ; 87(1): 2-13, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117981

RESUMEN

The glucose transporter 1 (GLUT1) protein is involved in the basal-level absorption of glucose in tumor cells. Inhibiting GLUT1 decreases tumor cell proliferation and induces tumor cell damage. Natural GLUT1 inhibitors have been studied only to a small extent, and the structures of known natural GLUT1 inhibitors are limited to a few classes of natural products. Therefore, discovering and researching other natural GLUT1 inhibitors with novel scaffolds are essential. Physalis angulata L. var. villosa is a plant known as Mao-Ku-Zhi (MKZ). Withanolides are the main phytochemical components of MKZ. MKZ extracts and the components of MKZ exhibited antitumor activity in recent pharmacological studies. However, the antitumor-active components of MKZ and their molecular mechanisms remain unknown. A cell membrane-biomimetic nanoplatform (CM@Fe3O4/MIL-101) was used for target separation of potential GLUT1 inhibitors from MKZ. A new withanolide, physagulide Y (2), together with six known withanolides (1, 3-7), was identified as a potential GLUT1 inhibitor. Physagulide Y was the most potent GLUT1 inhibitor, and its antitumor activity and possible mechanism of action were explored in MCF-7 human cancer cells. These findings advance the development of technologies for the targeted separation of natural products and identify a new molecular framework for the investigation of natural GLUT1 inhibitors.


Asunto(s)
Antineoplásicos Fitogénicos , Physalis , Witanólidos , Humanos , Physalis/química , Transportador de Glucosa de Tipo 1 , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Proteínas Facilitadoras del Transporte de la Glucosa , Extractos Vegetales/química , Witanólidos/farmacología , Witanólidos/química , Proteínas de Transporte de Membrana , Estructura Molecular
5.
Bioorg Chem ; 145: 107216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387396

RESUMEN

ß-Carboline alkaloids are natural and synthetic products with outstanding antitumor activity. C3 substituted and dimerized ß-carbolines exert excellent antitumor activity. In the present research, 37 ß-carboline derivatives were synthesized and characterized. Their cytotoxicity, cell cycle, apoptosis, and CDK2- and DNA-binding affinity were evaluated. ß-Carboline monomer M3 and dimer D4 showed selective activity and higher cytotoxicity in tumor cells than in normal cells. Structure-activity relationships (SAR) indicated that the amide group at C3 enhanced the antitumor activity. M3 blocked the A549 (IC50 = 1.44 ± 1.10 µM) cell cycle in the S phase and inhibited A549 cell migration, while D4 blocked the HepG2 (IC50 = 2.84 ± 0.73 µM) cell cycle in the G0/G1 phase, both of which ultimately induced apoptosis. Furthermore, associations of M3 and D4 with CDK2 and DNA were proven by network pharmacology analysis, molecular docking, and western blotting. The expression level of CDK2 was downregulated in M3-treated A549 cells and D4-treated HepG2 cells. Moreover, M3 and D4 interact with DNA and CDK2 at sub-micromolar concentrations in endothermic interactions caused by entropy-driven adsorption processes, which means that the favorable entropy change (ΔS > 0) overcomes the unfavorable enthalpy change (ΔH > 0) and drives the spontaneous reaction (ΔG < 0). Overall, these results clarified the antitumor mechanisms of M3 and D4 through disrupting the cell cycle by binding DNA and CDK2, which demonstrated the potential of M3 and D4 as novel antiproliferative drugs targeting mitosis.


Asunto(s)
Antineoplásicos , Proliferación Celular , Simulación del Acoplamiento Molecular , Ciclo Celular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , ADN , Carbolinas/farmacología , Carbolinas/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
6.
Appl Opt ; 63(6): 1590-1599, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437373

RESUMEN

The polarization imaging technique leverages the disparity between target and background polarization information to mitigate the impact of backward scattered light, thereby enhancing image quality. However, the imaging model of this method exhibits limitations in extracting inter-image features, resulting in less-than-optimal outcomes in turbid underwater environments. In recent years, machine learning methodologies, particularly neural networks, have gained traction. These networks, renowned for their superior fitting capabilities, can effectively extract information from multiple images. The incorporation of an attention mechanism significantly augments the capacity of neural networks to extract inter-image correlation attributes, thereby mitigating the constraints of polarization imaging methods to a certain degree. To enhance the efficacy of polarization imaging in complex underwater environments, this paper introduces a super-resolution network with an integrated attention mechanism, termed as SRGAN-DP. This network is a fusion of an enhanced SRGAN network and the high-performance deep pyramidal split attention (DPSA) module, also proposed in this paper. SRGAN-DP is employed to perform high-resolution reconstruction of the underwater polarimetric image dataset, constructed specifically for this study. A comparative analysis with existing algorithms demonstrates that our proposed algorithm not only produces superior images but also exhibits robust performance in real-world environments.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38401106

RESUMEN

Objective: To assess the role of miR-30c-5p in subarachnoid hemorrhage (SAH) and its possible mechanism. Methods: We established a SAH model by injecting fresh arterial non-heparinized blood into the anterior cistern of the optic chiasm of healthy Sprague-Dawley rats. Next, we treated the rats with a miR-30c-5p inhibitor or miR-30c-5p mimics. We then assessed behavior, serum lactate dehydrogenase levels, albumin expression, neuronal degeneration, neuronal apoptosis, neuronal survival, and the cerebral edema index in the SAH model rats. We identified downstream target genes of miR-30c-5p using the Targetscan database and confirmed them via luciferase reporter assay. Finally, we assessed the effect of these targeted genes on brain injury in SAH rats through a recovery assay. Results: Our results showed that the overexpression of miR-30c-5p in brain tissue 24h after SAH prevented brain injury, reduced inflammation levels and nerve function scores, inhibited neuronal apoptosis, and improved neuronal survival. Meanwhile, inhibiting miR-30c-5p yielded opposite effects. Two genes related to the autophagy pathway, ATG5 and ATG12, were identified as miR-30c-5p downstream target genes. Silencing ATG5 and ATG12 alleviated brain injury induced by knocking down miR-30c-5p. Conclusion: Our findings suggest that miR-30c-5p protects from SAH-induced brain injury by inhibiting the ATG5/ATG12 pathway and it may serve as a new diagnostic maker or target for treatment of SAH patients.

8.
Alzheimers Dement ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938161

RESUMEN

INTRODUCTION: To investigate the role of a novel type of protein kinase C delta (PKCδ) in the neuroinflammation of Alzheimer's disease (AD). METHODS: We analyzed PKCδ and inflammatory cytokines levels in cerebrospinal fluid (CSF) of AD and normal controls, as well as their correlations. The cellular expression pattern of PKCδ and the effects of PKCδ modulation on microglia-mediated neuroinflammation were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, RNA sequencing (RNA-seq), and immunofluorescence staining. RESULTS: PKCδ levels were increased dramatically in the CSF of AD patients and positively correlated with cytokines. PKCδ is expressed mainly in microglia in the brain. Amyloid beta (Aß) stimulation increased PKCδ expression and secretion, which led to upregulation of the nuclear factor kappa B (NF-κB) pathway and overproduction of proinflammatory cytokines. Downregulation or inhibition of PKCδ attenuated Aß-induced microglial responses and improved cognitive function in an AD mouse model. DISCUSSION: Our study identifies PKCδ as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD. HIGHLIGHTS: Protein kinase C delta (PKCδ) levels increase in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD), and positively correlate with elevated inflammatory cytokines in human subjects. PKCδ is expressed mainly in microglia in vivo, whereas amyloid beta (Aß) stimulation increases PKCδ expression and secretion, causing upregulation of the nuclear factor kappa B (NF-κB) pathway and production of inflammatory cytokines. Downregulation or inhibition of PKCδ attenuates Aß-enhanced NF-κB signaling and cytokine production in microglia and improves cognitive function in AD mice. PKCδ serves as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD.

9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 88-99, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403342

RESUMEN

Anemarrhena asphodeloides is a common medicinal material used in clinical prescriptions and Chinese patent medicine. In this study, the Illumina platform was used to obtain the chloroplast genome sequences of seven kinds of A. asphodeloides from different areas. The specific DNA barcodes were screened by comparative genomics analysis, and the DNA barcodes were used to identify the germplasm resources and analyze the genetic diversity of A. asphodeloides samples from different areas in China. All the seven chloroplast genomes had a ring structure. The total length was 156 801-156 930 bp, and 113 genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative genomics analysis showed that rps16, trnG-GCC, atpF, rpoB, ycf3, rpl16, ndhF, trnS-GCU_trnG-GCC, petN-psbM, and ndhF-rpl32 were potential candidates for specific DNA barcodes of A. asphodeloides. In this study, the second intron of ycf3 and atpF intron sequences with a sequence length of 700-800 bp and easy amplification were selected for polymerase chain reaction(PCR) amplification and sequencing of 594 samples from 26 areas. The sequence analysis showed that six and eight haplotypes of ycf3 and atpF sequences could be identified, respectively, and 17 haplotypes could be identified by combined analysis of the two sequences, which were named Hap1-Hap17. The haplotype diversity(H_d), nucleotide diversity(P_i), and genetic distance of A. asphodeloides in 26 populations were 0.68, 0.93×10~(-3), and 0-0.003 1, respectively, indicating that the genetic diversity within the species of A. asphodeloides is rich. The intermediary adjacent network analysis showed that Hap5 was the oldest haplotype, which was mainly distributed in Yixian county of Baoding, Hebei province, Hequ county of Xinzhou, Shanxi province, and Xiangfen county of Linfen, Shanxi province. This study has important guiding significance for the identification of A. asphodeloides species, the protection and development of germplasm resources, and the identification of production areas, and it provides a research basis for further revealing the genetic evolution law of A. asphodeloides.


Asunto(s)
Anemarrhena , Anemarrhena/química , Código de Barras del ADN Taxonómico , Variación Genética , China , Filogenia
10.
BMC Neurol ; 23(1): 13, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36631804

RESUMEN

BACKGROUND: Carotid vulnerable plaque is an important risk factor for stroke occurrence and recurrence. However, the relationship between risk parameters related to carotid vulnerable plaque (plaque size, echogenicity, intraplaque neovascularization, and plaque stiffness) and neurological outcome after ischemic stroke or TIA is unclear. This study investigates the value of multimodal ultrasound-based carotid plaque risk biomarkers to predict poor short-term functional outcome after ischemic stroke or TIA. METHODS: This study was a single-center, prospective, continuous, cohort study to observe the occurrence of adverse functional outcomes (mRS 2-6/3-6) 90 days after ischemic stroke or TIA in patients, where the exposure factors in this study were carotid plaque ultrasound risk biomarkers and the risk factors were sex, age, disease history, and medication history. Patients with ischemic stroke or TIA (mRS ≤3) whose ipsilateral internal carotid artery stenosis was ≥50% within 30 days were included. All patients underwent multimodal ultrasound at baseline, including conventional ultrasound, superb microvascular imaging (SMI), and shear wave elastography (SWE). Continuous variables were divided into four groups at interquartile spacing for inclusion in univariate and multifactorial analyses. After completion of a baseline ultrasound, all patients were followed up at 90 days after ultrasound, and patient modified neurological function scores (mRSs) were recorded. Multivariate Cox regression and ROC curves were used to assess the risk factors and predictive power for predicting poor neurological function. RESULTS: SMI revealed that 20 (30.8%) patients showed extensive neovascularization in the carotid plaque, and 45 (69.2%) patients showed limited neovascularization in the carotid plaque. SWE imaging showed that the mean carotid plaque stiffness was 51.49 ± 18.34 kPa (23.19-111.39 kPa). After a mean follow-up of 90 ± 14 days, a total of 21 (32.3%) patients had a mRS of 2-6, and a total of 10 (15.4%) patients had a mRS of 3-6. Cox regression analysis showed that the level of intraplaque neovascularization and plaque stiffness were independent risk factors for a mRS of 2-6, and the level of intraplaque neovascularization was an independent risk factor for a mRS of 3-6. After correcting for confounders, the HR of intraplaque neovascularization level and plaque stiffness predicting a mRS 2-6 was 3.06 (95% CI 1.05-12.59, P = 0.041) and 0.51 (95% CI 0.31-0.83, P = 0.007), respectively; the HR of intraplaque neovascularization level predicting a mRS 3-6 was 6.11 (95% CI 1.19-31.45, P = 0.031). For ROC curve analysis, the mRSs for intraplaque neovascularization level, plaque stiffness, and combined application to predict 90-day neurological outcome ranged from 2 to 6, with AUCs of 0.73 (95% CI 0.59-0.87), 0.76 (95% CI 0.64-0.89) and 0.85 (95% CI 0.76-0.95), respectively. The mRSs for the intraplaque neovascularization level to predict 90-day neurological outcome ranged from 3 to 6, with AUCs of 0.79 (95% CI 0.63-0.95). CONCLUSION: Intraplaque neovascularization level and plaque stiffness may be associated with an increased risk of poor short-term functional outcome after stroke in patients with recent anterior circulation ischemic stroke due to carotid atherosclerosis. The combined application of multiple parameters has efficacy in predicting poor short-term functional outcome after stroke.


Asunto(s)
Estenosis Carotídea , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Ataque Isquémico Transitorio/diagnóstico por imagen , Ataque Isquémico Transitorio/epidemiología , Ataque Isquémico Transitorio/complicaciones , Estudios de Cohortes , Estudios Prospectivos , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/complicaciones , Ultrasonografía/métodos , Placa Aterosclerótica/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/complicaciones , Factores de Riesgo , Biomarcadores
11.
Bull Entomol Res ; 113(1): 72-78, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35938224

RESUMEN

The codling moth Cydia pomonella is a major pest of global significance impacting pome fruits and walnuts. It threatens the apple industry in the Loess Plateau and Bohai Bay in China. Sterile insect technique (SIT) could overcome the limitations set by environmentally compatible area-wide integrated pest management (AW-IPM) approaches such as mating disruption and attract-kill that are difficult to suppress in a high-density pest population, as well as the development of insecticide resistance. In this study, we investigated the effects of X-ray irradiation (183, 366, 549 Gy) on the fecundity and fertility of a laboratory strain of C. pomonella, using a newly developed irradiator, to evaluate the possibility of X-rays as a replacement for Cobalt60 (60Co-γ) and the expanded future role of this approach in codling moth control. Results show that the 8th-day is the optimal age for irradiation of male pupae. The fecundity decreased significantly as the dosage of radiation increased. The mating ratio and mating number were not influenced. However, treated females were sub-sterile at a radiation dose of 183 Gy (20.93%), and were almost 100% sterile at a radiation dose of 366 Gy or higher. Although exposure to a radiation dose of 366 Gy resulted in a significant reduction in the mating competitiveness of male moths, our radiation biology results suggest that this new generation of X-ray irradiator has potential applications in SIT programs for future codling moth control.


Asunto(s)
Infertilidad , Mariposas Nocturnas , Femenino , Masculino , Animales , Rayos X , Rayos gamma , Fertilidad
12.
Planta ; 255(5): 107, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445881

RESUMEN

MAIN CONCLUSION: Panax notoginseng PnMYB2 is a transcriptional activator of primary and secondary cell wall formation by promoting the PCW-specific gene CesA3 and key lignin biosynthetic gene CCoAOMT1, respectively. R2R3-MYB transcription factors play important roles in regulation secondary cell wall (SCW) formation. However, there are few reports on the functions of MYB transcription factors which involved in both primary cell wall (PCW) and SCW formation. Here, we isolated an R2R3-MYB transcription factor, PnMYB2, from Panax notoginseng roots which are widely used in Chinese traditional medicines and contain abundant cellulose and lignin. The expression pattern of PnMYB2 was similar to the accumulation pattern of cellulose and lignin contents in different organs. PnMYB2 localized in the nucleus and may function as a transcriptional activator. Overexpression of PnMYB2 in Arabidopsis thaliana enhanced cellulose and lignin biosynthesis, and remarkably increased thickness of PCW and SCW in the stem of transgenic plants compared with wild-type plants. The expression levels of genes associated with PCW-specific cellulose synthase (CesA) genes and key SCW-specific lignin biosynthetic genes were significantly increased in PnMYB2-overexpressing plants compared to the wild type plants. Furthermore, yeast one-hybrid, dual-luciferase reporter assays and electrophoretic mobility shift assays (EMSA) results verified that PnMYB2 could bind and activate the promoters of AtCesA3 and PnCesA3, which are the PCW-specific cellulose biosynthetic genes, and AtCCoAOMT1 and PnCCoAOMT1, which are the key lignin biosynthetic genes. These results demonstrated the central role of PnMYB2 in PCW-specific cellulose formation and SCW-specific lignin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Panax notoginseng , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Lignina/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Nanotechnology ; 33(48)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35994980

RESUMEN

Lithium-sulfur (Li-S) battery is now a promising technology for energy storage. However, rapid capacity decay due to sulfur dissolution and shutting effect severely limit its commercial development. In this work, a NH2-UIO-66 metal organic framework-derived porous composite (Co-ZrO2@NC) consists of nitrogen-doped carbon (NC) and zirconium oxide (ZrO2) loaded with cobalt nanoparticles was prepared. The porous NC component not only increases the accommodation of sulfur in the cathode, but also benefits the charge transfer in sulfur electrochemistry. The Co and ZrO2would act as active centers to enhance the adsorption/conversion of lithium polysulfide and improve its electrochemical utilization. When used in sulfur cathode, the Co-ZrO2@NC electrode shows excellent electrochemical performance with an initial specific capacity of 1073 mAh g-1at a rate of 0.2 C and a reversible capacity of 1015 mAh g-1after 100 cycles, corresponding to a capacity retention of 94.6%. Furthermore, after 300 cycles at 1.0 C, corresponding to a capacity retention of 75.4%. Moreover, the cell also exhibits good rate performance (640 mAh g-1at 3.0 C). Even at high sulfur loading of 4.0 mg cm-2, the S/Co-ZrO2@NC cathode is able to deliver an areal specific capacity of 4.8 mAh cm-2.

14.
Environ Res ; 214(Pt 1): 113835, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810807

RESUMEN

The issue of growing increase of antibiotic resistance genes (ARGs) in manure-fertilized soil needs urgently addressing. In this study, fermentation broth from fruit and vegetable waste was prepared to reduce ARG abundance in swine manure-fertilized soils. With a six-month field experiment, we found that swine manure-fertilized soil had significantly higher ARG abundance than soil applied with chemical fertilizer. As expected, the homemade fermentation broth significantly reduced ARG abundance in swine manure-fertilized soil, possibly through the decrease of abundance of Actinomyces, in which there was a 48.0%, 51.9%, and 66.7% decrease in the abundance of Nocardioides, Streptomyces, and Nonomuraea, respectively. With the bacteriostatic experiment, we observed that fermentation broth (5 mL/L) significantly inhibited the growth and metabolism in Actinomycetes spp. and Nocardioides sp., in terms of ATPase and PDH activity. These findings confirmed that the inhibition of Actinobacteria, some of the most dominant ARG hosts, was one of the main mechanisms responsible for the decrease in ARG abundance in fermentation broth-treated soil. This study provides field-scale evidence of a feasible strategy for controlling farmland ARG pollution, which is of utmost importance for soil health in the context of sustainable agriculture.


Asunto(s)
Estiércol , Suelo , Animales , Antibacterianos , Farmacorresistencia Microbiana , Fermentación , Frutas , Genes Bacterianos , Microbiología del Suelo , Porcinos , Verduras
15.
Acta Radiol ; 63(2): 278-286, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33525913

RESUMEN

BACKGROUND: Risk stratification of asymptomatic carotid plaque remains an issue in stroke prevention in clinical practice. PURPOSE: To investigate whether a multimodal ultrasound (MMU) model would help plaque risk stratification in patients with asymptomatic carotid stenosis. MATERIAL AND METHODS: A prospective study was conducted of symptomatic and asymptomatic patients with > 50% proximal internal carotid artery (ICA) stenosis. All patients underwent MMU examination. Multivariable regression analyses were performed to identify parameters associated with ischemic vascular events (IVE). These parameters were used to develop a scoring nomogram to assess the probability of IVE. We elaborated the diagnostic performance of the MMU nomogram using receiver operating characteristic (ROC) curves. RESULTS: From December 2018 to December 2019, 98 patients (75 men, mean age 67 ± 8 years) were included; 50 were symptomatic and 48 were asymptomatic. Multivariable regression analyses revealed that plaque surface morphology (PSM) (odds ratio [OR] 2.99, 95% confidence interval [CI] 1.26-7.12, P = 0.013), intraplaque neovascularization (IPN) grades (OR 3.23, 95% CI 1.77-5.89, P<0.001), and carotid stenosis degree (CSD) (OR 4.12, 95% CI 1.47-11.55, P = 0.007) were independently associated with IVE. For the nomogram, the area under the ROC curve was 0.85 (95% CI 0.77-0.92) and the Hosmer-Lemeshow test P value was 0.822. CONCLUSIONS: In patients with proximal ICA > 50%, PSM, IPN grades, and CSD were independent variables associated with IVE. The MMU nomogram provided favorable value to risk stratification of IVE. Future large-scale studies with long-term follow-up are needed to validate these findings.


Asunto(s)
Enfermedades Asintomáticas , Estenosis Carotídea/diagnóstico por imagen , Imagen Multimodal , Placa Aterosclerótica/diagnóstico por imagen , Ultrasonografía Doppler en Color , Anciano , Arteria Carótida Interna/diagnóstico por imagen , Estenosis Carotídea/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/complicaciones , Estudios Prospectivos , Curva ROC , Análisis de Regresión , Medición de Riesgo , Accidente Cerebrovascular/prevención & control
16.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1814-1823, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35534251

RESUMEN

Scutellaria baicalensis is a commonly used Chinese medicinal herb. In this study, we identified the germplasm resources of commercial S. baicalensis samples based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences according to the available chloroplast genome sequencing results, and measured the content of baicalin by HPLC. Through the above means we determined the best DNA barcode that can be used to detect the germplasm resources and evaluate the quality of commercial S. baicalensis samples. A total of 104 samples were collected from 24 provinces, from which DNA was extracted for PCR amplification. The amplification efficiencies of trnH-psbA, petA-psbJ, and ycf4-cemA sequences were 100%, 59.62%, and 25.96%, respectively. The results of sequence analysis showed that 5, 4, and 2 haplotypes were identified based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences, respectively. However, the sequences of haplotypes in commercial samples were different from that of the wild type, and the joint analysis of three fragments of S. baicalensis only identified 6 haplotypes. Furthermore, the phylogenetic analysis and genetic distance analysis indicated that trnH-psbA could be used to identify S. baicalensis from adulterants. The above analysis showed that trnH-psbA was the best fragment for identifying the germplasm resources of commercial S. baicalensis samples. We then analyzed the haplotypes(THap1-THap5) of commercial S. baicalensis samples based on trnH-psbA and found that THap2 was the main circulating haplotype of the commercial samples, accounting for 86.55% of the total samples, which indicated the scarce germplasm resources of commercial S. baicalensis samples. The content of baicalin in all the collected commercial S. baicalensis samples exceeded the standard in Chinese Pharmacopoeia and had significant differences(maximum of 12.21%) among samples, suggesting that the quality of commercial S. baicalensis samples varied considerably. However, there was no significant difference in baicalin content between different provinces or between different haplotypes. This study facilitates the establishment of the standard identification system for S. baicalensis, and can guide the commercial circulation and reasonable medication of S. baicalensis.


Asunto(s)
Código de Barras del ADN Taxonómico , Scutellaria baicalensis , Cromatografía Líquida de Alta Presión , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Scutellaria baicalensis/genética
17.
Cancer Cell Int ; 21(1): 435, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412642

RESUMEN

BACKGROUND: Pseudogenes played important roles in tumorigenesis, while there are nearly no reports about the expression and roles of HSPA7 in the cancer. METHODS: Firstly, we used Logistic regression, the KS test, the GEPIA database, UALCAN database and qRT-PCR to analyze the expression level of HSPA7 in KIRC, then we used the Cox regression and the Kaplan-Meier curve to analyze the overall survival (OS) of KIRC patients with different Clinico-pathological parameters. Thirdly, we used the multivariate Cox analysis of influencing factors to compare the correlation between the HSPA7 expression level and the clinical parameters. Finally, we used multi-GSEA analysis and the Tumor Immunoassay Resource (TIMER) database to explore the functional role of HSPA7 in KIRC RESULTS: The HSPA7 is highly expressed in KIRC tumor tissues, and its expression is related to clinico-pathological features and survival in KIRC patients. GSEA analysis displayed the high expression of HSPA7 in KIRC were related to several tumor-related and immune-related pathways. With the TIMER database analysis we showed that HSPA7 levels were correlated with the CD4+ T cells, neutrophils and Dendritic Cell. CONCLUSIONS: Our study showed that HSPA7 is very important in the tumor progression and may act as a poor prognostic biomarker for KIRC tumor by modulating immune infiltrating cells.

18.
Biochem Biophys Res Commun ; 515(4): 627-635, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31176490

RESUMEN

MicroRNAs (miRNAs) have been shown to be involved in the pathophysiological processes of pain. At present, the roles and mechanisms of miRNAs in neonatal repetitive pain are largely unknown. In our research, the expression of miR-140-3p was increased in premature infants who received repetitive painful stimuli since admission, and in rat pups after repetitive needlestick stimulation. As a result of behavioral testing, the inhibition of miR-140-3p significantly suppressed abnormal mechanical and thermal hyperalgesia in rats after needlestick. Furthermore, the inhibition decreased the expression of the inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as glucocorticoid receptor expression in rats after needlestick. Using bioinformatic analyses, the 3'-untranslated region of TGF-ß3 was predicted to be a target of miR-140-3p. Down-regulation of miR-140-3p significantly promoted the expression of TGF-ß3 in vitro and in vivo. Mechanistic investigations revealed that TGF-ß3 is a direct target of miR-140-3p, and is involved in the miR-140-3p-mediated effects on neonatal repetitive pain and neuroinflammation. In summary, our current research suggests that down-regulation of miR-140-3p can inhibit painful tactile stimulation of rat pups by inhibiting TGF-ß3. Our results suggest that miR-140-3p may provide a new regulatory target for preventing the effects of neonatal repetitive pain.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/metabolismo , Dolor/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal , Biología Computacional , Regulación hacia Abajo , Inflamación , Interleucina-6/metabolismo , Microglía/metabolismo , Manejo del Dolor/métodos , Ratas , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
19.
Otolaryngol Head Neck Surg ; 171(2): 596-598, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461406

RESUMEN

The aim of this study is to determine the adherence rate to reporting guidelines in published otolaryngology research. We performed an evidence-based review of all original clinical research published in 2021 in five otolaryngology journals for adherence to the appropriate guideline for the study type by evaluating whether the corresponding reporting guideline was mentioned in the body of the published manuscript. There were 1140 original research articles included in this study. Most studies were observational, for which the STROBE reporting guidelines are recommended (n = 791, 70.3%). All studies had an average adherence rate of 16.8% (n = 192/1140). The STROBE adherence rate was 4.9%, with JAMA Otolaryngology having the highest proportion of observation studies using the STROBE guidelines (23/49, 46.9%). Reporting guidelines are important tools to use in presenting original research. The use of these guidelines varies in the otolaryngology literature and highlights the ongoing need to support research reproducibility and usefulness.


Asunto(s)
Adhesión a Directriz , Otolaringología , Otolaringología/normas , Adhesión a Directriz/estadística & datos numéricos , Humanos , Publicaciones Periódicas como Asunto , Investigación Biomédica/normas , Edición/normas
20.
ACS Appl Mater Interfaces ; 16(12): 15558-15568, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38476008

RESUMEN

Current single-function superwettable materials are typically designed for either oil removal or water removal and are constrained by oil density, limiting their widespread applications. Janus membranes with opposite wettability on their two surfaces have recently emerged and present attractive opportunities for on-demand oil/water emulsion separation. Here, a combination strategy is introduced to prepare a Janus membrane with asymmetric superwettability for switchable oil/water emulsion separation. A mussel-inspired asymmetric interface introduction cooperating with the sequence-confined surface modification not only brings about an asymmetric superwettability Janus interface but also guarantees an outstanding stable interface and remarkable chemical stability surfaces. Specifically, the superhydrophilic surface with underwater superoleophobicity can separate surfactant-stabilized oil-in-water emulsions. Conversely, other surface displays opposite superhydrophobicity and superoleophilicity to treat surfactant-stabilized water-in-oil emulsions. Significantly, this superwettable Janus membrane presents superior long-term on-demand oil/water emulsion separation without obvious flux decline and high recovery ability because of its superwettability and superior stability. Furthermore, the asymmetric superwettability enhances the interfacial floatability at air-water interfaces, enabling the design of advanced interfacial materials. The as-prepared superwettable Janus membrane has established a cooperated separation system, overcoming the monotony of conventional superwettable membranes and expanding the application of these specialized membranes to oily wastewater treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA