Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(5): e23513, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421300

RESUMEN

Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.


Asunto(s)
Glicoproteínas , Insuficiencia Cardíaca , Péptidos y Proteínas de Señalización Intercelular , Deficiencia de Proteína , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Ciclina B1 , Remodelación Ventricular , Transducción de Señal
2.
FASEB J ; 37(6): e22982, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219522

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) plays an important role in different cardiovascular diseases. However, the role of TRPA1 in dilated cardiomyopathy (DCM) remains unclear. Here, we aimed to investigate the role of TRPA1 in DCM induced by doxorubicin (DOX) and explore its possible mechanisms. GEO data were used to explore the expression of TRPA1 in DCM patients. DOX (2.5 mg/kg/week, 6 weeks, i.p.) was used to induce DCM. Bone marrow-derived macrophages (BMDMs) and neonatal rat cardiomyocytes (NRCMs) were isolated to explore the role of TRPA1 in macrophage polarization, cardiomyocyte apoptosis, and pyroptosis. In addition, DCM rats were treated with the TRPA1 activator, cinnamaldehyde to explore the possibility of clinical translation. TRPA1 expression was increased in left ventricular (LV) tissue in DCM patients and rats. TRPA1 deficiency aggravated the cardiac dysfunction, cardiac injury, and LV remodeling in DCM rats. In addition, TRPA1 deficiency promoted the M1 macrophage polarization, oxidative stress, cardiac apoptosis, and pyroptosis induced by DOX. RNA-seq results showed that TRPA1 knockout promoted the expression of S100A8, an inflammatory molecule that belongs to the family of Ca2+ -binding S100 proteins, in DCM rats. Furthermore, S100A8 inhibition attenuated M1 macrophage polarization in BMDMs isolated from TRPA1 deficiency rats. Recombinant S100A8 promoted the apoptosis, pyroptosis, and oxidative stress in primary cardiomyocytes stimulated with DOX. Finally, TRPA1 activation via cinnamaldehyde alleviated the cardiac dysfunction and reduced S100A8 expression in DCM rats. Taken together, these results suggested that TRPA1 deficiency aggravates DCM by promoting S100A8 expression to induce M1 macrophage polarization and cardiac apoptosis.


Asunto(s)
Cardiomiopatía Dilatada , Animales , Ratas , Acroleína , Calgranulina A , Proteínas del Citoesqueleto , Doxorrubicina , Macrófagos , Miocitos Cardíacos , Canal Catiónico TRPA1 , Humanos
3.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824022

RESUMEN

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Asunto(s)
Infarto del Miocardio , Remodelación Ventricular , Animales , Ratones , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocardio/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT1/metabolismo
4.
FASEB J ; 36(10): e22509, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063107

RESUMEN

Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Semaforinas , Biomarcadores , Transformación Celular Neoplásica , Humanos , Neovascularización Patológica/patología , Semaforinas/metabolismo
5.
Pharmacol Res ; 195: 106832, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364787

RESUMEN

Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Humanos , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/tratamiento farmacológico , Antiinflamatorios , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Metabólicas/tratamiento farmacológico , Biomarcadores , Receptores Acoplados a Proteínas G
6.
Pharmacol Res ; 182: 106337, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35781060

RESUMEN

Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.

7.
Anal Chem ; 93(15): 6120-6127, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33821629

RESUMEN

MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas , Oro , Límite de Detección , MicroARNs/genética
8.
Int J Med Sci ; 18(8): 1768-1777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746594

RESUMEN

Aim: In other respiratory infectious diseases, obesity may be associated with a poor outcome. For coronavirus disease 2019 (COVID-19), the association between obesity and severity or prognosis requires further analysis. Methods: This was a retrospective, single-center study. Hospitalized patients were recruited in Renmin Hospital of Wuhan University from January 2, 2020 to February 20, 2020. The data of body mass index (BMI) was obtained from follow-up of surviving patients. According to BMI, normal weight was defined as 18.5-23.9 kg/m2, overweight as 24.0-27.9 kg/m2 and obesity as > 28.0 kg/m2. Results: A total of 463 patients were enrolled, of which 242 (52.3%) patients were in the normal weight group; 179 (38.7%) were in the overweight group; and 42 (9.1%) were in the obesity group. Compared to the normal group, obese patients were more likely to have a higher heart rate; lower finger oxygen saturation; higher levels of white blood cells, neutrophil counts, basophil counts, intravenous glucose, triacylglycerol, uric acid, alanine aminotransferase, creatine kinase-MB, CD19+ cell counts and percentage; and lower levels of monocyte percentage, high density lipoprotein and CD3+ cell percentage. In addition, the proportions of hypertension (21.5% vs. 42.6%) and severe+critical illness (47.8 vs. 81.0 %) were significantly higher in the obesity group than those in normal group. However, no significant differences were observed between the normal and obesity groups in critical illness, organ damage and defined endpoint (mechanical ventilation or intensive care unit). Multiple logistic regression showed that obesity increased the risk of developing severe+critical illness (Odd ratio 3.586, 95% CI 1.550-8.298, P=0.003) in patients with COVID-19, and did not affect the risk of critical illness, organ damage and endpoints. Overweight did not affect the risk of severity, organ damage or endpoint in patients with COVID-19. Conclusion: Obesity may be a risk factor for developing severity in patients with COVID-19.


Asunto(s)
COVID-19/complicaciones , Obesidad/complicaciones , Anciano , Recuento de Linfocito CD4 , COVID-19/sangre , COVID-19/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/diagnóstico por imagen , Radiografía Torácica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
9.
Mediators Inflamm ; 2020: 2369279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322161

RESUMEN

BACKGROUND: The interleukin-12 (IL-12) family consists of four members, namely, IL-12, IL-23, IL-27, and IL-35. The aim of this study was to examine the expression of circulating IL-12, IL-23, IL-27, and IL-35 in hypertensive patients. METHODS: Blood samples were collected from hypertensive patients and nonhypertensive (control) subjects, and protein multifactorial monitor kits were used to measure the plasma IL-12, IL-23, IL-27, and IL-35 levels in each sample. In addition, all enrolled subjects underwent ambulatory blood pressure monitoring (ABPM) and vascular stiffness. RESULTS: Hypertensive patients exhibited higher IL-12, IL-23, and IL-27 levels and lower IL-35 levels than control subjects; IL-12, IL-23, and IL-27 levels were positively correlated with both systolic blood pressure (SBP) and diastolic blood pressure (DBP), while IL-35 levels were negatively correlated with SBP and DBP. IL-12, IL-23, and IL-27 levels gradually increased in patients with grade I, II, and III hypertension, while IL-35 levels gradually reduced. According to the ABPM results, hypertensive patients were divided into the dipper and nondipper hypertension groups; IL-12, IL-23, IL-27, and IL-35 levels showed no differences between the two groups, but IL-12, IL-23, and IL-27 levels in both groups increased compared with those in the control group, while IL-35 levels decreased. Additionally, the expression of these IL-12 family members was influenced by many clinical factors and was independently associated with the occurrence of carotid atherosclerotic plaques. CONCLUSIONS: The changes in IL-12, IL-23, IL-27, and IL-35 levels were not associated with the presence of the nondipper type but were closely associated with the development of carotid atherosclerotic plaque in hypertensive patients.


Asunto(s)
Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/fisiopatología , Interleucina-12/sangre , Adulto , Anciano , Presión Sanguínea/fisiología , Femenino , Humanos , Hipertensión/sangre , Hipertensión/fisiopatología , Interleucina-23/sangre , Interleucina-27/sangre , Interleucinas/sangre , Masculino , Persona de Mediana Edad
10.
Cell Prolif ; : e13688, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873710

RESUMEN

Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.

11.
Ageing Res Rev ; 99: 102352, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857706

RESUMEN

The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.


Asunto(s)
Hipertensión , Inflamación , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Animales , Antihipertensivos/uso terapéutico , Antihipertensivos/farmacología
12.
Metabolism ; : 155979, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038735

RESUMEN

AIMS: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct the progression of diabetic cardiomyopathy. We assessed the potential role and therapeutic value of LGR6 (G protein-coupled receptor containing leucine-rich repeats 6) in diabetic cardiomyopathy. METHODS AND RESULTS: Type 2 diabetes models were established using high-fat diet/streptozotocin-induced diabetes in mice. LGR6 knockout mice were generated. Recombinant adeno-associated virus serotype 9 carrying LGR6 under the cardiac troponin T promoter was injected into diabetic mice. Cardiomyocytes incubated with high glucose (HG) were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing and a chromatin immunoprecipitation assay. We found that LGR6 expression was upregulated in diabetic hearts and HL1 cardiomyocytes treated with HG. The LGR6 knockout aggravated, but cardiomyocyte-specific LGR6 overexpression ameliorated, cardiac dysfunction and remodeling in diabetic mice. Mechanistically, in vivo and in vitro experiments revealed that LGR6 deletion aggravated, whereas LGR6 overexpression alleviated, ferroptosis and disrupted mitochondrial biogenesis by regulating STAT3/Pgc1a signaling. STAT3 inhibition and Pgc1a activation abrogated LGR6 knockout-induced mitochondrial dysfunction and ferroptosis in diabetic mice. In addition, LGR6 activation by recombinant RSPO3 treatment ameliorated cardiac dysfunction, ferroptosis and mitochondrial dysfunction in diabetic mice. CONCLUSIONS: We identified a previously undescribed signaling pathway of the LGR6-STAT3-Pgc1a axis that plays a critical role in ferroptosis and mitochondrial disorders during diabetic cardiomyopathy and provides an option for treatment of diabetic hearts.

13.
J Hypertens ; 42(3): 420-431, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937508

RESUMEN

The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.


Asunto(s)
Ácidos Docosahexaenoicos , Hipertensión , Proteínas Quinasas Activadas por Mitógenos , Ratones , Ratas , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/farmacología , Músculo Liso Vascular/metabolismo , Remodelación Vascular/fisiología , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Proliferación Celular , Angiotensina II/farmacología , Miocitos del Músculo Liso , Células Cultivadas
14.
Autophagy ; : 1-21, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873925

RESUMEN

Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in ß-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/ß3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: ß-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-ß-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.

15.
J Am Heart Assoc ; 13(6): e031283, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456416

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS: A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1ß (interleukin 1ß) and TGF-ß (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS: Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.


Asunto(s)
Cardiomiopatía Dilatada , Animales , Humanos , Ratones , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Moléculas de Adhesión Celular/metabolismo , Discoidinas , Factor de Crecimiento Epidérmico , Transición Epitelial-Mesenquimal , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas/metabolismo
16.
MedComm (2020) ; 5(3): e491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463394

RESUMEN

Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.

17.
J Am Heart Assoc ; 12(2): e027862, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36645089

RESUMEN

Scavenger receptors (SRs) are a structurally heterogeneous superfamily of evolutionarily conserved receptors that are divided into classes A to J. SRs can recognize multiple ligands, such as modified lipoproteins, damage-associated molecular patterns, and pathogen-associated molecular patterns, and regulate lipid metabolism, immunity, and homeostasis. According to the literature, SRs may play a critical role in myocardial infarction and ischemia/reperfusion injury, and the soluble types of SRs may be a series of promising biomarkers for the diagnosis and prognosis of patients with acute coronary syndrome or acute myocardial infarction. In this review, we briefly summarize the structure and function of SRs and discuss the association between each SR and ischemic cardiac injury in patients and animal models in detail. A better understanding of the effect of SRs on ischemic cardiac injury will inspire novel ideas for therapeutic drug discovery and disease evaluation in patients with myocardial infarction.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión , Animales , Infarto del Miocardio/terapia , Reperfusión Miocárdica/efectos adversos , Biomarcadores , Receptores Depuradores/uso terapéutico
18.
Biochem Pharmacol ; 214: 115671, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380112

RESUMEN

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) has been linked to the development of various cardiovascular diseases, but its role in diabetic cardiomyopathy is not well understood. This study aimed to investigate the protective effects of TRPA1 deficiency on diabetic cardiomyopathy in rats with streptozotocin-induced diabetes and in neonatal rat cardiac fibroblasts (CFs) exposed to high glucose (HG). METHODS: Cardiac TRPA1 expression levels were measured in diabetic rats. Cardiac function, remodeling, and fibrosis were analyzed in Sprague-Dawley (SD) rats and TRPA1-deficient rats with diabetic cardiomyopathy. In vitro, fibrosis was measured in CFs exposed to HG. Additionally, 1,8-cineole, a natural inhibitor of TRPA1, was used to treat SD rats with diabetic cardiomyopathy. RESULTS: TRPA1 expression was increased in the heart tissue of diabetic rats and in CFs treated with HG. TRPA1 deficiency significantly improved cardiac function in diabetic rats, as evidenced by improved echocardiography and reduced cardiac hypertrophy and fibrosis. In vitro, TRPA1 deficiency suppressed the transformation of HG-induced CFs into myofibroblasts. The cardioprotective effect of TRPA1 deficiency was found to inhibit cardiac fibrosis by regulating GRK5/NFAT signaling. Furthermore, inhibition of GRK5/NFAT signaling abolished the promotion of CF transformation into myofibroblasts by TRPA1 activation. Inhibition of TRPA1 activation by 1,8-cineole reduced cardiac dysfunction and remodeling in diabetic rats by regulating GRK5/NFAT signaling. CONCLUSIONS: TRPA1 deficiency reduced cardiac fibrosis in diabetic rats and inhibited HG-induced CF activation in vitro by regulating GRK5/NFAT signaling. The TRPA1 inhibitor 1,8-cineole may serve as a novel therapeutic agent for the treatment of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Ratas Sprague-Dawley , Eucaliptol/uso terapéutico , Fibrosis
19.
J Am Heart Assoc ; 12(12): e029053, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37318008

RESUMEN

Background Sympathetic hyperactivity contributes to pathological remodeling after myocardial infarction (MI). However, the mechanisms underlying the increase in sympathetic activity remain unknown. Microglia are the predominant immune cells in the central nervous system and can regulate sympathetic neuron activity through neuroimmune response in the hypothalamic paraventricular nucleus. The present study aimed to investigate whether microglia-mediated neuroimmune response can regulate sympathetic activity and cardiac remodeling after MI. Methods and Results PLX3397 (pexidartinib) was used to deplete central microglia via intragastric injection or intracerebroventricular injection. After that, MI was induced by ligation of the left anterior descending coronary artery. Our study showed that MI resulted in the activation of microglia in the paraventricular nucleus. Microglia depletion, which was induced by PLX3397 treatment via intragastric injection or intracerebroventricular injection, improved cardiac function, reduced infarction size, and attenuated cardiomyocyte apoptosis, fibrosis, pathological electrical remodeling, and myocardial inflammation after MI. Mechanistically, these protective effects were associated with an attenuated neuroimmune response in the paraventricular nucleus, which contributed to the decrease of sympathetic activity and attenuation of sympathetic remodeling in the heart. However, intragastric injection with PLX3397 obviously depleted macrophages and induced neutrophil and T-lymphocyte disorders in the heart, blood, and spleen. Conclusions Microglia depletion in the central nervous system attenuates pathological cardiac remodeling after MI by inhibiting neuroimmune response and sympathetic activity. Intragastric administration of PLX3397 leads to serious deleterious effects in peripheral immune cells, especially macrophages, which should be a cause for concern in animal experiments and clinical practice.


Asunto(s)
Microglía , Infarto del Miocardio , Remodelación Ventricular , Animales , Corazón , Microglía/inmunología , Infarto del Miocardio/inmunología , Sistema Nervioso Simpático , Remodelación Ventricular/fisiología , Inmunidad
20.
Biochem Pharmacol ; 210: 115469, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868324

RESUMEN

BACKGROUND: Several interleukins (ILs) have been demonstrated to participate in cardiac injury. This study aimed to investigate whether IL-27p28 plays a regulatory role in doxorubicin (DOX)-induced cardiac injury by regulating inflammation and oxidative stress. METHODS: Dox was used to establish a mouse cardiac injury model, and IL-27p28 was knocked out to observe its role in cardiac injury. In addition, monocytes were adoptively transferred to clarify whether monocyte-macrophages mediate the regulatory role of IL-27p28 in DOX-induced cardiac injury. RESULTS: IL-27p28 knockout significantly aggravated DOX-induced cardiac injury and cardiac dysfunction. IL-27p28 knockout also upregulated the phosphorylation levels of p65 and STAT1 and promoted M1 macrophage polarization in DOX-treated mice, which increased cardiac inflammation and oxidative stress. Moreover, IL-27p28-knockout mice that were adoptively transferred WT monocytes exhibited worse cardiac injury and cardiac dysfunction and higher cardiac inflammation and oxidative stress. CONCLUSIONS: IL-27p28 knockdown aggravates DOX-induced cardiac injury by worsening the M1 macrophage/M2 macrophage imbalance and its associated inflammatory response and oxidative stress.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Interleucinas , Animales , Ratones , Apoptosis , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Cardiopatías/metabolismo , Inflamación/metabolismo , Macrófagos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Interleucinas/genética , Interleucinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA