Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Pharmacother ; : 10600280241252211, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755964

RESUMEN

BACKGROUND: A growing body of evidence indicates a strong association between exogenous thyroid hormone (ETH) and brain health. Establishing the potential relationship between ETH therapy and dementia symptoms is crucial for patients with thyroid disorders. OBJECTIVE: In this study, we investigate the potential association between ETH therapy and dementia symptoms by exploring the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS: Disproportionality analysis (DPA) was conducted using postmarketing data from the FAERS repository (Q1 2004 to Q4 2023). Cases of dementia symptoms associated with ETH therapy were identified and analyzed through DPA using reporting odds ratios and information component methods. Dose and time-to-onset analyses were performed to assess the association between ETH therapy and dementia symptoms. RESULTS: A total of 9889 cases of ETH-associated symptoms were identified in the FAERS database. Dementia accounted for a consistent proportion of adverse drug reactions each year (3.4%-6.3%). The DPA indicated an association between ETH therapy and dementia symptoms, which remained significant even across sex, age, and indications. The median time-to-onset of dementia symptoms was 7.5 days, and the median treatment time was 40.5 days. No significant dose-response relationship was observed. CONCLUSION AND RELEVANCE: This study provides evidence for a link between ETH therapy and dementia. Clinicians are therefore advised to exercise vigilance, conduct comprehensive monitoring, and consider individualized dosing to mitigate potential reactions to ETH drug administration.

2.
Ophthalmic Res ; 67(1): 62-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38091959

RESUMEN

INTRODUCTION: Hermansky-Pudlak syndrome (HPS) is a rare autosomal-recessive disease characterized by ocular albinism (OA) or oculocutaneous albinism (OCA), platelet dysfunction, and other symptoms. This study aimed to analyze the molecular defect in two Chinese families with suspected OA, as well as to investigate the profile of HPS6 variants and their genotype-phenotype correlations. METHODS: Seven members from two families were recruited and underwent clinical ophthalmologic examinations. The genomic DNA was extracted from peripheral blood leukocytes. Whole-exome sequencing was performed on the proband of family JX. The single coding exon of HPS6 was directly Sanger sequenced based on PCR amplification in all available family members. An additional 46 probands from families or sporadic cases with the pathogenic variants of HPS6 reported in the literature were reviewed. RESULTS: We identified two different compound heterozygous truncating variants of HPS6 in probands with suspected OA from two independent families. The proband of family JX had c.1674dup and c.503-504del variants, and the other proband from family CZ had a nonsense variant of c.1114C>T and a frameshift variant of c.1556del. Among them, c.1674dup and c.1556del variants in HPS6 have not been reported previously. Therefore, our patients were diagnosed as HPS6 disease by molecular diagnostics. In the retrospective cohort of HPS6 patients, we delineated the profile of HPS6 variants and revealed a significant overlap between CpG islands and the variants of HPS6, suggesting a potential link between DNA methylation and HPS6 variants. We also observed a spatial aggregation of the variants in 3D structure of HPS6 protein, implying the possible functional significance of these structural regions. In addition, we did not find any significant genotype-phenotype correlation of HPS6, and neither did we observe a correlation between the truncation length of the HPS6 protein and the phenotype of HPS6 disease. CONCLUSION: Our research expands the spectrum of HPS6 variants, providing a comprehensive delineation of their profile and systematically investigating genotype-phenotype correlations in HPS6. These findings could offer potentially valuable clues for investigating the molecular mechanism underlying HPS6 pathogenesis, as well as aiding the clinical diagnosis of HPS6 patients and improving disease prognosis.


Asunto(s)
Albinismo Ocular , Síndrome de Hermanski-Pudlak , Humanos , Albinismo Ocular/diagnóstico , Albinismo Ocular/genética , Estudios Retrospectivos , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/genética , Fenotipo , Proteínas/genética , Mutación , Linaje , Péptidos y Proteínas de Señalización Intracelular/genética
3.
J Cell Biochem ; 120(9): 15800-15813, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081170

RESUMEN

This study performed the first microarray analysis of long-noncoding RNA (lncRNA) and mRNA expression profiles in human steroid-induced avascular necrosis of the femoral head (SAVNFH). Expression levels of lncRNAs and mRNAs in three human SAVNFH samples and three human femoral head fracture samples (controls) were detected using third-generation lncRNA microarrays (KangChen Biotech, Shanghai, China). The fold change, false discovery rate, and P value were utilized to filter genes with significant differential expression in the SAVNFH samples compared with the control samples. In total, there were 1179 upregulated and 3214 downregulated lncRNAs (P2. zerofold, P < 0.05). Meanwhile, 1092 upregulated and 565 downregulated mRNAs were found in the SAVNFH samples compared with the control samples. Then, quantitative real-time polymerase chain reaction was used to confirm the previous microarray results using 8 and 20 selected dysregulated lncRNAs and mRNAs, respectively, and the results generally confirmed the microarray findings. Finally, we used Gene Ontology (GO) and pathway analysis to investigate the functions of the altered mRNAs and their associated GO terms and biological pathways. The Immune system process term (GO:0002376) was the most significantly upregulated GO term, and the Regulation of blood coagulation term (GO:0030193) was the most significantly downregulated GO term in the biological process category for the SAVNFH samples. "Hematopoietic cell lineage - Homo sapiens (human) (Pathway ID: hsa04640)" and "Complement and coagulation cascades - Homo sapiens (human) (Pathway ID: hsa04610)" were the most significantly up- and downregulated pathways in the SAVNFH samples compared with the controls. In conclusion, the differential expression of lncRNAs and mRNAs may be correlated with the pathogenesis of SAVNFH, and these significantly dysregulated lncRNAs and mRNAs may function through networks or participate in several specific biological processes. Further research is needed to understand their exact functions and mechanisms in SAVNFH.


Asunto(s)
Necrosis de la Cabeza Femoral/genética , Perfilación de la Expresión Génica/métodos , ARN Largo no Codificante/genética , ARN Mensajero/genética , Esteroides/efectos adversos , Necrosis de la Cabeza Femoral/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
J Nat Prod ; 78(10): 2405-10, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26378981

RESUMEN

Aspertetranones A-D (1-4), four new highly oxygenated putative rearranged triketide-sesquiterpenoid meroterpenes, were isolated from the marine algal-associated fungus Aspergillus sp. ZL0-1b14. On the basis of a comprehensive spectroscopic analysis, the planar structures of aspertetranones were determined to possess an unusual skeleton in the terpenoid part. The relative and absolute configurations of the aspertetranones were assigned on the basis of NOESY analysis, X-ray crystallography, and circular dichroism spectroscopy. Compounds 1-4 were evaluated for anti-inflammatory activity in LPS-stimulated RAW264.7 macrophages. Aspertetranone D exhibited an inhibitory effect against IL-6 production with 69% inhibition at 40 µM.


Asunto(s)
Aspergillus/química , Sesquiterpenos/aislamiento & purificación , Algoritmos , Animales , Antiinflamatorios/farmacología , China , Cristalografía por Rayos X , Interleucina-6/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Biología Marina , Ratones , Conformación Molecular , Estructura Molecular , Óxido Nítrico/análisis , Resonancia Magnética Nuclear Biomolecular , Sesquiterpenos/química , Sesquiterpenos/farmacología
5.
Front Pharmacol ; 15: 1383663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576491

RESUMEN

Objective: Rheumatoid arthritis (RA) is a systemic autoimmune disease. Its pathogenesis has not yet been clarified, so it is urgent to explore therapeutic targets. Here, we clarified the role of HDAC6 in the mechanism of action of RA through mediating chaperone-mediated autophagy (CMA) to provide a clinical treatment of RA. Methods: We used rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis mice (CIA mice) as models of RA and pharmacological inhibitors as well as genetic interference with adeno-associated viruses to reduce the expression of HDAC6. We explored the influence of CAY10603 on RA-FLS proliferation and inflammation, as well as the expression of proteins related to the CMA signaling pathway. CIA model was constructed using DBA/1J mice. Arthritis symptoms in CIA mice were evaluated, and the expression and localization of CMA-related proteins in mouse ankle joints were examined. Results: CAY10603 inhibited proliferation as well as the level of the molecular chaperone autophagy in RA-FLS. HDAC6 shRNA significantly reduced the clinical signs of arthritis in CIA mice, as did the expression of HDAC6 in the serum and ankle synovial tissues of CIA mice. Finally, it significantly inhibited the level of Hsc70 and LAMP-2A, which are involved in the CMA signaling pathway, in ankle joint tissues. Conclusion: Downregulation of HDAC6 may inhibit CMA and thereby ameliorate RA.

6.
Chem Biol Interact ; 398: 111112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901789

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.


Asunto(s)
Lesión Pulmonar Aguda , Dexmedetomidina , Proteínas HSP70 de Choque Térmico , Lipopolisacáridos , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Interleucina-1beta/metabolismo
7.
Ophthalmic Genet ; 45(2): 147-152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38284172

RESUMEN

PURPOSE: To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS: A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS: Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS: This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.


Asunto(s)
Retinitis Pigmentosa , Rodopsina , Humanos , Rodopsina/genética , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Mutación , Secuencia de Bases , Análisis Mutacional de ADN
8.
Animal Model Exp Med ; 7(1): 71-76, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375555

RESUMEN

The rodent running-wheel recording apparatus is a reliable approach for studying circadian rhythm. This study demonstrated how to construct a simple and intelligent running-wheel recording system. The running wheel was attached to the cage's base, whereas the Hall sensor was attached to the cage's cover. Then, the RJ25 adaptor relayed the running signal to the main control board. Finally, the main control board was connected to the USB port of the computer with the USB connection. Data were collected using the online-accessible, self-created software Magturning. Through Magturning, generated data were saved and exported in real time. Afterward, the device was validated by collecting data on the locomotor activities of mice under different light conditions. In conclusion, this new device can record circadian activity of rodents. Our device is appropriate for interdisciplinary investigations related to biological clock research.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano , Ratones , Animales
9.
PeerJ ; 12: e17846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224822

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, which caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lead to a crisis with devastating disasters to global public economy and health. Several studies suggest that the SARS-CoV-2 nucleocapsid protein (N protein) is one of uppermost structural constituents of SARS-CoV-2 and is relatively conserved which could become a specific diagnostic marker. In this study, eight single domain antibodies recognized the N protein specifically which were named pN01-pN08 were screened using human phage display library. According to multiple sequence alignment and molecular docking analyses, the interaction mechanism between antibody and N protein was predicted. ELISA results indicated pN01-pN08 with high affinity to protein N. To improve their efficacy, two fusion proteins were prepared and their affinity was tested. These finding showed that fusion proteins had higher affinity than single domain antibodies and will be used as diagnosis for the pandemic of SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , SARS-CoV-2/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , COVID-19/inmunología , COVID-19/diagnóstico , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Fosfoproteínas/inmunología , Fosfoproteínas/química , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Biblioteca de Péptidos
10.
Int Immunopharmacol ; 126: 111240, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992444

RESUMEN

Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Inflamación/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Fibroblastos , Membrana Sinovial , Fragmentos Fc de Inmunoglobulinas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Receptores Tipo II del Factor de Necrosis Tumoral
11.
Int J Ophthalmol ; 17(6): 1007-1017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895685

RESUMEN

AIM: To identify genetic defects in a Chinese family with congenital posterior polar cataracts and assess the pathogenicity. METHODS: A four-generation Chinese family affected with autosomal dominant congenital cataract was recruited. Nineteen individuals took part in this study including 5 affected and 14 unaffected individuals. Sanger sequencing targeted hot-spot regions of 27 congenital cataract-causing genes for variant discovery. The pathogenicity of the variant was evaluated by the guidelines of American College of Medical Genetics and InterVar software. Confocal microscopy was applied to detect the subcellular localization of fluorescence-labeled ephrin type-A receptor 2 (EPHA2). Co-immunoprecipitation assay was implemented to estimate the interaction between EphA2 and other lens membrane proteins. The mRNA and protein expression were analyzed by reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting assay, respectively. The cell migration was analyzed by wound healing assay. Zebrafish model was generated by ectopic expression of human EPHA2/p.R957P mutant to demonstrate whether the mutant could cause lens opacity in vivo. RESULTS: A novel missense and pathogenic variant c.2870G>C was identified in the sterile alpha motif (SAM) domain of EPHA2. Functional studies demonstrated the variant's impact: reduced EPHA2 protein expression, altered subcellular localization, and disrupted interactions with other lens membrane proteins. This mutant notably enhanced human lens epithelial cell migration, and induced a central cloudy region and roughness in zebrafish lenses with ectopic expression of human EPHA2/p.R957P mutant under differential interference contrast (DIC) optics. CONCLUSION: Novel pathogenic c.2870G>C variant of EPHA2 in a Chinese congenital cataract family contributes to disease pathogenesis.

12.
Int Immunopharmacol ; 124(Pt A): 110938, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713782

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is a highly enriched modification found in circular RNAs (CircRNAs); however, the ability and mechanism of CircRNAs to encode for m6A function in rheumatoid arthritis (RA) remain poorly understood. METHODS: We utilized an epitranscriptomic microarray to measure levels and quantities of m6A methylated CircRNAs in synovial tissues of patients with RA and osteoarthritis (OA). We then utilized methylated RNA immunoprecipitation- and MazF-quantitative PCR to identify and validate differentially m6A-methylated RNAs between the groups, conducted a functional enrichment analysis, and selected protein-protein interaction hub genes. Lastly, we predicted and validated the CircRNA/miRNA/mRNA interaction networks. RESULTS: We detected 4,845 CircRNAs containing m6A in our samples, with 53 CircRNAs upregulated, and 139 CircRNAs downregulated compared to human OA synovial tissue (|fold change| ≥ 1.2 and p ≤ 0.05). The differentially m6A-modified CircRNAs were associated with the interleukin-6-mediated signaling pathway, with an increase in relative m6A-methylated levels of hsa_circ_0007259 in human RA, a significant decrease in hsa_miR-21-5p, and an increase in signal transducer and activator of transcription 3(STAT3). The Luciferase Reporter Gene assay verified the binding of hsa_circ_0007259 to hsa_miR-21-5p and the subsequent binding of hsa_miR-21-5p to STAT3. CONCLUSION: We showed a notable increase in the relative m6A-methylated levels of hsa_circ_0007259 in human RA, indicating a potential role of hypermethylated hsa_circ_0007259 in RA pathogenesis. This may provide valuable insight into the mechanism of RA and the possibility of utilizing hsa_circ_0007259 as a valuable biomarker.

13.
Inflammation ; 45(2): 919-928, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35059921

RESUMEN

Sepsis caused by a dysregulated host response to infection is a life-threatening disease that can lead to organ dysfunction. Due to its unclear and complex mechanism, effective medicine for the treatment of sepsis is urgently required. The extensive release of cytokines and other mediators like TNF-α and interleukin-6 (IL-6) play critical roles in the development of sepsis. The present study aims to evaluate the potential protective effects of an anti-TNF-α/HSA/IL-6R triple-specific fusion protein (TAL-6) under septic experimental conditions. The anti-TNF-α/HSA/IL-6R triple-specific fusion protein (TAL-6), which links three published single domain antibodies, was designed and constructed in our lab. High purity fusion proteins were obtained with high binding affinity for TNF-α (94.75 pM), human serum albumin (1.83 nM) and IL-6R (2.29 nM). TAL-6 protected mouse fibroblast fibrosarcoma cells (L929) from apoptosis induced by TNF-α, establishing that the expressed fusion proteins can selectively interact with TNF-α in vitro. In vivo, the survival rate of cecal ligation and puncture (CLP) was notably increased in the group with TAL-6 treatment and significantly higher compared with the single-targeted IL-6R and TNF-α fusion protein at the same dose. After treatment with TAL-6, the serum levels of TNF-α, IL-1ß, and IL-6 were significantly decreased, and sepsis-induced pathological injuries in the kidney were remarkably attenuated. TAL-6 is therefore a potential candidate for the development of new drugs against sepsis in human.


Asunto(s)
Sepsis , Factor de Necrosis Tumoral alfa , Animales , Ciego/patología , Citocinas , Modelos Animales de Enfermedad , Ratones , Sepsis/tratamiento farmacológico , Sepsis/patología , Inhibidores del Factor de Necrosis Tumoral
14.
Front Pharmacol ; 13: 887330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431959

RESUMEN

Long non-coding RNA (lncRNA) is involved in the regulation of rheumatoid arthritis (RA) and many other diseases. In this study, a new lncRNA, NR-133666, was identified to be highly expressed in the adjuvant-induced arthritis rat model using the Agilent lncRNA microarray assay. qRT-PCR verified that NR-133666 was upregulated in fibroblast-like synoviocyte of a collagen-induced arthritis (CIA) rat model. Fluorescence in situ hybridization analysis showed that NR-133666 is mainly expressed in the cytoplasm of collagen-induced arthritis FLS. MTT assay and EdU staining results showed that the proliferation of CIA FLS was inhibited after NR-133666 was knocked down, and the wound healing assay showed that the migration of CIA FLS was also suppressed. Dual luciferase detection was used to confirm the relationship among NR-133666, miR-133c and MAPK1. MAPK1 is the target gene of miR-133c, where NR-133666 acts as a sponge of miR-133c to reduce the inhibitory effect of miR-133c on MAPK1. Overexpression of NR-133666 and MAPK1 can promote the proliferation and migration of CIA FLS, and overexpression of miR-133c can reverse this phenomenon. Western blot indicated that it may be related to the ERK/MAPK signaling pathway. Collectively, we identified that lncRNA NR-133666 acted as a miR-133c sponge that can promote the proliferation and migration of CIA FLS through regulating the miR-133c/MAPK1 axis.

15.
Curr Eye Res ; 46(7): 961-970, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297791

RESUMEN

Purpose: To investigate the protective effects of nicotinamide riboside (NR) on oxidative damage in hydrogen peroxide (H2O2)-exposed human lens epithelial cell lines (SRA01/04) and the possible mechanisms underlying its protective effects.Materials and methods: SRA01/04 cells were divided into three groups: the control (CON) group, model (H2O2) group and treatment (NR+H2O2) group. Superoxide dismutase (SOD), catalase (CAT) and total glutathione (GSH) levels were detected to evaluate oxidative damage induced by different concentrations of H2O2 in SRA01/04 cells. After SRA01/04 cells were treated with NR and/or H2O2, cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst staining, cell apoptosis was analysed using flow cytometry, reactive oxygen species (ROS) were measured with the DCFH-DA probe, and mitochondria were stained with MitoTracker to measure the mitochondrial membrane potential (MMP). In addition, western blotting was performed to detect the levels of proteins associated with apoptosis and related signalling pathways.Results: H2O2 induced oxidative damage in SRA01/04 cells by inhibiting the activity of SOD and CAT and reducing total GSH levels. Treatment of SRA01/04 cells with NR significantly increased cell viability and reduced cell apoptosis and ROS generation, whereas SOD and CAT activities and total GSH and MMP levels were improved by the NR treatment in an H2O2-exposed cell model. Furthermore, NR significantly inhibited the activation of the MAPK pathway but promoted activation of the JAK2/Stat3 pathway compared with the model group.Conclusions: NR may alleviate oxidative damage by targeting the MAPK and JAK2/Stat3 pathways in H2O2-treated SRA01/04 cells. NR may represent anovel drug for preventing or treating cataracts.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Cristalino/citología , Niacinamida/análogos & derivados , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Compuestos de Piridinio/farmacología , Apoptosis , Western Blotting , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Glutatión/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Niacinamida/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Superóxido Dismutasa/metabolismo
16.
Cell Death Dis ; 12(5): 413, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879768

RESUMEN

Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Control de Calidad
17.
Inflammation ; 44(4): 1620-1628, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33751358

RESUMEN

The currently used anti-cytokine therapeutic antibodies cannot selectively neutralize pathogenic cytokine signalling that cause collateral damage to protective signalling cascades. The single domain chain firstly discovered in Camelidae displays fully functional ability in antigen-binding against variable targets, which has been seemed as attractive candidates for the next-generation biologic drug study. In this study, we established a simple prokaryotic expression system for a dual target-directed single domain-based fusion protein against the interleukin-6 receptor and human serum, albumin, the recombinant anti-IL-6R fusion protein (VHH-0031). VHH-0031 exhibited potent anti-inflammatory effects produced by LPS on cell RAW264.7, where the major cytokines and NO production were downregulated after 24 h incubation with VHH-0031 in a dose-dependent manner. In vivo, VHH-0031 presented significant effects on the degree reduction of joint swelling in the adjuvant-induced arthritis (AIA) rat, having a healthier appearance compared with the dexamethasone. The expression level of JNK protein in the VHH-0031 group was significantly decreased, demonstrating that VHH-0031 provides a low-cost and desirable effect in the treatment of more widely patients.


Asunto(s)
Antiinflamatorios/inmunología , Artritis Experimental/tratamiento farmacológico , Interleucina-6/antagonistas & inhibidores , Albúmina Sérica Humana/antagonistas & inhibidores , Anticuerpos de Dominio Único/inmunología , Animales , Antiinflamatorios/uso terapéutico , Especificidad de Anticuerpos , Artritis Experimental/inmunología , Citocinas/metabolismo , ADN Complementario/genética , Dexametasona/uso terapéutico , Evaluación Preclínica de Medicamentos , Inducción Enzimática/efectos de los fármacos , Humanos , Interleucina-6/inmunología , Lipopolisacáridos/toxicidad , MAP Quinasa Quinasa 4/biosíntesis , MAP Quinasa Quinasa 4/genética , Ratones , Modelos Moleculares , Terapia Molecular Dirigida , Óxido Nítrico/metabolismo , Conformación Proteica , Células RAW 264.7 , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Albúmina Sérica Humana/inmunología , Anticuerpos de Dominio Único/genética
18.
Front Pharmacol ; 12: 681424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054555

RESUMEN

Diabetic nephropathy the main reason for end stage renal disease is a common microvascular complication in patients with type 1 and type 2 diabetes. The interleukin-6 (IL-6), acting as a pleiotropic cytokine, play key roles in main autoimmune disorders. The recombinant anti-IL-6R fusion proteins (VHH-0031) constructed and obtained in our lab is a dual target-directed single domain-based fusion protein against the interleukin-6 receptor. This study aims to explore the renoprotective effect of VHH-0031 in diabetic nephropathy. VHH-0031 treatment alleviated renal inflammation, morphologic injury and renal insufficiency in both Goto-Kakizaki rats and STZ-induced Sprague Dawley rats. These renoprotective effects of VHH-0031 are associated with alleviating inflammation and suppression of the JAK2/STAT3 signaling pathway. The mesangial cells treated with VHH-0031 exhibited anti-proliferation, anti-inflammation and inactivation of JAK2/STAT3 pathway under high glucose condition. In conclusion, this study demonstrates that VHH-0031 exhibited a potent protective effect in kidney of diabetic rats and its mechanism may be concerned with the inhibition of the IL-6R/JAK2/STAT3 pathway of glomerular mesangial cells.

19.
Int J Ophthalmol ; 13(12): 1976-1982, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344199

RESUMEN

AIM: To evaluate the feasibility of promoting genetic detection for granular corneal dystrophy type 2 (GCD2) by a questionnaire conducted among citizens in five cities in China. METHODS: The data were collected by questionnaire, and analyzed by Chi-square test and one-tailed t test in IBM SPSS statistics. RESULTS: Based on the survey data on the awareness of GCD2 genetic detection in this study and the positive predictive analysis report of the citizens in five cities in China, the vast majority (84.2%) of respondents had never heard of it and did not know that GCD2 patients have been prohibited from performing excimer surgery that can deteriorate GCD2 patients' condition even leading to blindness. Though 3.4% of patients understood GCD2 very much, they have no idea that GCD2 could not be 100% accuracy diagnosed by the conventional inspection methods. CONCLUSION: It is feasible and necessary to use GCD2 genetic detection as an excimer preoperative examination project. In order to promote the development of detection project, a few improvements should be carried out in terms of the promoting efforts, costs, and research progress.

20.
Biosci Rep ; 40(9)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32880389

RESUMEN

The currently used anti-cytokine therapeutic antibodies cannot selectively neutralize pathogenic cytokine signaling that cause collateral damage to protective signaling cascades carrying the potential for unwanted side effects. The variable domains of heavy-chain only antibodies (HCAbs) discovered in Camelidae are stable and display to be fully functional in antigen-binding against variable targets, which seem to be attractive candidates for the next-generation biologic drug study. The purpose of our study was to establish a simple prokaryotic expression system for large-scale expression, purification, and refolding of the recombinant anti-tumor necrosis factor α (TNF-α) fusion protein (FVH1-1) from inclusion bodies. Over 95% purity of the recombinant anti-TNF-α fusion proteins was obtained by just one purification step in our developed prokaryotic expression system, while the results of surface plasmon resonance (SPR) established the high-efficiency potent binding ability of FVH1-1 to human TNF-α. The counteraction of TNF-α cytotoxic effect experiment on the mouse fibroblast fibrosarcoma cell line (L929) confirmed that the expressed FVH1-1 were able to selectively and highly combine with human recombinant TNF-α (hTNF-α) in vitro. Western blot results showed that FVH1-1 can inhibit the activation of caspase-9 and PARP, which are the apoptotic signaling pathway proteins activated by hTNF-α. Meanwhile, lysosome autophagy signaling pathways stimulated by hTNF-α were inhibited by FVH1-1, which down-regulated the expression of LC3II/LC3I and up-regulated the expression of P62, indicating that the autophagy linked with TNF-α-induced apoptosis in response to rheumatoid arthritis. The results of the AIA rat model experiment presented that FVH1-1 can reduce the degree of joint swelling and inflammatory factors to a certain extent in vivo.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Autofagia/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Autofagia/inmunología , Línea Celular Tumoral , Adyuvante de Freund/administración & dosificación , Adyuvante de Freund/inmunología , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/inmunología , Lisosomas/metabolismo , Ratones , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/uso terapéutico , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA