RESUMEN
Rapid social-economic development introduces modern lifestyles into rural areas, not only bringing numerous modern products but also new pollutants, such as chlorinated paraffins (CPs). The rural Tibetan Plateau has limited industrial activities and is a unique place to investigate this issue. Herein we collected 90 free-range chicken egg pool samples across the rural Tibetan Plateau to evaluate the pollution status of CPs. Meanwhile, CPs in related soils, free-range chicken eggs from Jiangxi, and farmed eggs from markets were also analyzed. The median concentrations of SCCPs (159 ng g-1 wet weight (ww)) and MCCPs (1390 ng g-1 ww) in Tibetan free-range chicken eggs were comparable to those from Jiangxi (259 and 938 ng g-1 ww) and significantly higher than those in farmed eggs (22.0 and 81.7 ng g-1 ww). In the rural Tibetan Plateau, the median EDI of CPs via egg consumption by adults and children were estimated to be 81.6 and 220.2 ng kg-1 bw day-1 for SCCPs and 483.4 and 1291 ng kg-1 bw day-1 for MCCPs, respectively. MCCPs might pose potential health risks for both adults and children in the worst scenario. Our study demonstrates that new pollutants should not be ignored and need further attention in remote rural areas.
Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Animales , Niño , Humanos , Tibet , Hidrocarburos Clorados/análisis , Parafina/análisis , Pollos , Monitoreo del Ambiente , ChinaRESUMEN
Atmospheric microplastics are important contributors to environmental contamination in aquatic and terrestrial systems and pose potential ecological risks. However, studies on atmospheric microplastics are still limited in urban regions of the Tibetan Plateau, a sentinel region for climate and environmental change under a warming climate. In this study, the occurrence and potential ecological risk of atmospheric microplastics were investigated in samples of suspended atmospheric microplastics collected in Lhasa city during the Tibetan New Year in February 2023. The results show that the average abundance of atmospheric microplastics in Lhasa was 7.15 ± 2.46 MPs m-3. The sizes of the detected microplastics ranged from 20.34 to 297.18 µm, approximately 87% of which were smaller than 100 µm. Fragmented microplastics (95.76%) were the dominant shape, followed by fibres (3.75%) and pellets (0.49%). The primary polymer chemical components identified were polyamide (68.73%) and polystyrene (16.61%). The analysis of meteorological data and the backwards trajectory model indicated the air mass in Lhasa mainly controlled by westwards, and the atmospheric microplastics mainly originated from long-distance atmospheric transport. The potential ecological risk index assessment revealed that the atmospheric microplastic pollution in Lhasa was relatively low. This study provides valuable insights and a scientific foundation for future research on the prevention and control of atmospheric microplastic pollution in Lhasa and other ecologically sensitive cities.
Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Microplásticos , Microplásticos/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo , Tibet , Atmósfera/química , Tamaño de la PartículaRESUMEN
The Tibetan Plateau, known as the "Third Pole", is currently in a state of perturbation caused by intensified human activity. In this study, 56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS, STXM, and NEXAFS spectroscopy. After careful examination of 3387 single particles, the results showed that Fe should be one of the most frequent metal elements. The Fe-containing single particles in irregular shape and micrometer size was about 7.8% and might be mainly from local sources. Meanwhile, the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide. Interestingly, the core-shell structure of iron-containing particles were about 38.8% and might be present as single-, dual- or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5, 10.5, 2.9 and 1.2, respectively. Meanwhile, iron and manganese were found to coexist with identical distributions in the single particles, which might induce a synergistic effect between iron and manganese in catalytic oxidation. Finally, the solid spherical structure of Fe-containing particles without an external layer were about 53.4%. The elements of Fe and Mn were co-existed, and might be presented as iron oxide-manganese oxide-silica composite. Moreover, the ferrous and ferric forms of iron might be co-existed. Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.
Asunto(s)
Compuestos Férricos , Hierro , Manganeso , Humanos , Hierro/química , Tibet , Microscopía Electrónica de TransmisiónRESUMEN
Deposition of atmospheric mercury (Hg) is the most important Hg source on the high-altitude Himalayas and Tibetan Plateau. Herein, total gaseous Hg (TGM) at an urban and a forest site on the Tibetan Plateau was collected respectively from May 2017 to October 2018, and isotopic compositions were measured to clarify the influences of landforms and monsoons on the transboundary transport of atmospheric Hg to the Tibetan Plateau. The transboundary transported anthropogenic emissions mainly originated over Indo-Gangetic Plain and carried over the Himalayas by convective storms and mid-tropospheric circulation, contributing over 50% to the TGM at the Lhasa urban site, based on the binary mixing model of isotopes. In contrast, during the transport of TGM from South Asia with low altitude, the uptake by evergreen forest in Yarlung Zangbo Grand Canyon largely decreased the TGM level and shifted isotopic compositions in TGM at the Nyingchi forest site, which are located at the high-altitude end of the canyon. Our results provided direct evidence from Hg isotopes to reveal the distinct patterns of transboundary transport to the Tibetan Plateau shaped by landforms and climates, which is critical to fully understand the biogeochemical cycling of Hg in the high-altitude regions.
Asunto(s)
Mercurio , Monitoreo del Ambiente/métodos , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , TibetRESUMEN
Using electro-dewatering as the pretreatment process for sludge bio-drying can improve the dewatering performance. It was innovatively investigated including the microbial mechanism and the kinetics of moisture removal by bio-drying with electro-dewatered sludge in this study. Two bio-drying processes using electro-dewatered sludge (EDS) and sludge added cornstalk conditioner (CSS) were compared. Microbial community analysis showed that the abundance of Bacteroidetes increased from 4.21% to 16.67% after electro-dewatering. The dominant phyla were Bacteroidetes (36.79%), Proteobacteria (32.35%), and Actinobacteria (24.58%) at the end of EDS bio-drying. Network analysis revealed that the co-occurrence patterns in EDS included 40 nodes and 97 edges. The prediction results of the Kyoto Encyclopedia of Genes and Genomes demonstrated that the relative abundances of carbohydrate metabolism and metabolism of terpenoids and polyketides in sludge decreased, while the relative abundances of lipid metabolism, xenobiotic biodegradation and metabolism increased after electro-dewatering. Five thin layer drying kinetic models were analyzed to estimate the bio-drying kinetic parameters. The Page's model could be better fitted to the results and the highest R2 was 0.9570 in the EDS. The new coefficients k (0.1637) and n (1.2097) were obtained. The results provided mechanism and data support for exploring and applying bio-drying technology after sludge electro-dewatering.
Asunto(s)
Microbiota , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Desecación/métodos , Cinética , AguaRESUMEN
Gangba sheep are known for having typical sensory characteristics attributed to free range conditions and grazing on wild plants. The genuine Gangba mutton was selected as the experimental group, and the commercial Tibetan mutton was selected as the control group, the nutritive composition of basic chemical components, amino acids and fatty acids in mutton were investigated to correlate its unique meat quality and eating satisfaction. The results showed that fatty acids were significantly higher (P<0.05) in Gangba mutton than in commercial mutton, and the higher content of flavoring amino acids (glutamic acid and aspartame) were primarily responsible for the taste attributes umami of meat juices. Moreover, the trace elements analysis in mutton and grazing factors (forage, water source and soil) were conducted, to explain the source of essential trace elements in mutton. The concentrations of essential trace elements show that the Gangba mutton was a valuable source for highly available Cu and Zn in human nutrition, and well managed with few detected of toxicity metal. The concentrations of essential trace elements in mutton are closely related to the trace elements in environmental grazing factors. In conclusion, the congenital grazing conditions (a highly mineralized water resource, natural forages and clean soils) were shown to contribute to the unique meat characteristics of Gangba sheep.
Asunto(s)
Carne , Oligoelementos , Animales , Análisis Factorial , Ácidos Grasos , Carne/análisis , Ovinos , TibetRESUMEN
Chlorinated paraffins (CPs) are widely employed in various consumer products. Rapid socioeconomic development drives the elevation of CPs contamination by increasing the usage of modern lifestyle products, but limited information exists about their occurrence in remote rural areas. In this study, the occurrence, and profiles of short- and medium-chain CPs (SCCPs and MCCPs) in soils, plants, chicken feeds, eggs, and free-range chicken tissues in the rural Tibetan Plateau were investigated. The median concentrations of SCCPs and MCCPs were 108 and 141 ng/g dry weight (dw) in soils, 1.76 × 103 and 1.16 × 103 ng/g dw in plants, 43.6 and 24.3 ng/g dw in chicken feeds, 299 and 251 ng/g lipid weight in free-range chicken eggs, and 182 -3.45 × 103 and 396 -7.75 × 103 ng/g lipid weight in chicken tissues, respectively. Correlation analysis demonstrated that soil was the primary source of CPs, and free-range chicken eggs were effective bioindicators for SCCPs and MCCPs contamination. Tissue distribution showed that SCCPs and MCCPs were highly accumulated in chicken tissues that local resident preferred to consume (such as muscle and stomach). Our findings lay the foundations for further evaluation of the potential risks of CPs on the ecosystem and human health in remote rural areas.
RESUMEN
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Asunto(s)
Exposición Dietética , Parafina , Población Rural , Tibet , Humanos , Exposición Dietética/estadística & datos numéricos , Exposición Dietética/análisis , Parafina/análisis , Población Rural/estadística & datos numéricos , Adulto , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos , Niño , Persona de Mediana Edad , Hidrocarburos Clorados/análisis , Medición de Riesgo , Femenino , Masculino , China , Preescolar , Adolescente , Adulto Joven , Dieta/estadística & datos numéricos , Contaminantes Ambientales/análisisRESUMEN
Revegetation of exposed sub-soil, while a desirable recovery strategy, often fails due to extreme soil chemical properties, such as low organic matter and pH levels. Microalgae play a key role in maintaining water quality in the lakes and rivers on the Qinghai-Tibet plateau. Plateau microalgae have extensive application prospects in environmental purification, biotechnology, medicine and cosmetics, food industry, and renewable energy. To identify the high biomass of microalgae present in nature, microalgae with the greatest biomass were screened from natural water samples through filtration, pre-culture, and plate scribing separation. Following identification via 18S rRNA sequencing as for the Desmodesmus sp., we constructed a neighbor-joining phylogenetic tree. The novel Desmodesmus sp. from the Tibetan Yamdrok Lake were identified through polyphasic taxonomy. Simultaneously, the sequence of the experimental samples and the target species were shown different following the identification and analysis of SNP and InDel loci. The light-absorbing properties of plateau Desmodesmus sp. have been investigated previously. The characteristic absorption peak of Desmodesmus sp. on the plateau was measured at 689 nm in the visible spectrum using full wavelength scanning with a UV-Vis spectrophotometer. For Desmodesmus sp. which is prone to settling in the process of amplification culture. By monitoring the change trend of total nitrogen, total phosphorus, pH and electrical conductivity in algae solution system, we determined that the logarithmic growth phase and the best transfer window of Desmodesmus sp. were at 15-20 days. This study can provide basic research methods for the study of microalgae in high altitude areas, and lay a foundation for the later study and application of microalgae.
Asunto(s)
Lagos , Microalgas , Biomasa , Nitrógeno , Fósforo , Filogenia , ARN Ribosómico 18S , Suelo , Tibet , Aguas ResidualesRESUMEN
Due to the utilization of landfill technology and geothermal energy production in Tibet, the contamination of the soils and underground water by trace element has currently become a serious problem, both ecologically and to the human health point of view. However, relevant studies concerning this critical problem, particularly in the Tibet area has not been found. Therefore, this study investigated the soil contamination and the spatial distribution of the trace elements in the areas surrounding the Tibetan landfill sites (LS) and geothermal sites (GS) through several pollution evaluation models. In addition, the possible sources of trace elements and their potential impact on public health were also investigated. Results showed that the trace elements in soils nearby LS and GS had moderate to high contamination risk. In soils surrounding LS, mercury had the highest concentration of 0.015 mg/kg and was 6 times higher than the background value of 0.008 mg/kg while in GS, arsenic had the highest concentration of 66.55 mg/kg, and exceeded the soil contamination risk value of 25 mg/kg. Maizhokunggar LS was the most polluted site with an average pollution load index value of 2.95 compared to Naqu, Nyingchi, Shigatse, and Lhasa. 42% of LS were with considerable ecological risk, and all GS had low ecological risk. Both carcinogenic and non-carcinogenic risk for children and adults (male, female) were within the acceptable range. According to the source analysis, unscientific anthropogenic activities including accumulated MSW, industrial discharges, and vehicle emissions significantly contributed 51.83% to soil trace element contamination. Considering that Tibet is an environment-ecologically vulnerable region with very weak self-adjustment ability, accumulated municipal solid waste in the landfill sites should be well disposed of, and even soil remediation should be well implemented.
Asunto(s)
Suelo , Monitoreo del Ambiente , Metales Pesados , Medición de Riesgo , Contaminantes del Suelo , Tibet , Oligoelementos , Instalaciones de Eliminación de ResiduosRESUMEN
In this paper, magnetic mesoporous carbon composites were prepared by calcination of the mixture of magnesium citrate and Fe3O4@SiO2 in an inert atmosphere. A high content of Fe3O4@SiO2 and MgO was in situ embedded in a carbon matrix. After removing the MgO template by diluted acid, the resulting material (Fe3O4@SiO2@mC) was subjected to further H2O2 oxidation treatment. The formed oxygen-containing functional groups on the products provided plenty of active sites for the adsorption of analytes of interest. The obtained composites (Fe3O4@SiO2@mC-H2O2) exhibited a mesoporous structure with a high specific surface area of 731 m2 g-1. The adsorption capacities of Fe3O4@SiO2@mC-H2O2 for Cu(II) and Pb(II) were calculated to be 86.5 and 156 mg g-1, respectively. Under optimal conditions, the adsorption isotherm of Cu(II) and Pb(II) onto Fe3O4@SiO2@mC-H2O2 fitted the Langmuir model and the adsorption kinetic was well-correlated with the pseudo-second-order model. Besides, Fe3O4@SiO2@mC-H2O2 exhibited fast removal dynamics (within less than 1 min) for Cu(II) and Pb(II), demonstrating great application potential in wastewater treatment.