RESUMEN
In the present study, the three-dimensional fluorescence spectra of River A with great flow rate were investigated. The results showed that there existed three unambiguous peaks in the excitation-emission matrix of River A at lambda(ex)/lambda(em) of around 230/340, 280/320 and 250/450 nm respectively. The fluorescence intensity varied significantly and had sharp fluctuation sometimes. But the COD(Mn) of the samples remained quite stable. This study indicated that fluorescence technique could demonstrate the pollution in the water bodies with great flow rate and furthermore make up for the deficiency of the conventional parameters related to organic pollution, i. e. invalidation to exhibit the components of pollutants. It is a good tool for the early-warning of the water quality.
RESUMEN
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a high morbidity and mortality rate. TMEM100 has been shown to be suppressor gene in a variety of tumors, but there are no reports on the role of TMEM100 in esophageal cancer (EC). AIM: To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion. METHODS: Firstly, we found the expression of TMEM100 in EC through The Cancer Genome Atlas database. The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification. To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100. Finally, we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases (MAPK) pathway. RESULTS: In the present study, by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects. Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells (cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting. CONCLUSION: TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK pathway. Promoter methylation may play a key role in regulating TMEM100 expression.
RESUMEN
In recent years, three-dimensional fluorescence spectrometry has been widely used to study the transportation and transformation of the environment pollutants. But little understanding about the relationship between fluorescence characteristics and molecular structure restricts its application. In the present paper, the excitation-emission matrix (EEM) of the typical aromatic pollutants and isomers, phenanthrene and anthracene were studied. The result showed that there existed a peak locating at lambda ex/lambdaem = 225/340 nm in the EEM of both phenanthrene and anthracene. Furthermore, the peaks at 275/360 nm of phenanthrene located quite close to the peak of anthracene at 285/360 nm. However, the difference between the EEM of phenanthrene and anthracene was significant. There existed the third fluorescence peak at 275/340 nm and the most intensive peak at 225/340 nm in the EEM of phenanthrene. The EEM of anthracene was more complicated. The most intensive peaks located at lambda ex,/lambdaem = 250/ 380, 250/400 and 250/425 nm respectiveoy. In addition, the fluorescence intensity of anthracene at 225/340 nm was about 1. 63 times that of phenanthrene when their concentrations were about 0. 058 1 mg L-1. The orbital energy gap of the frontier molecules of phenanthrene and anthracene were 4. 779 and 3. 621 eV respectively according to the density functional theory. Owe to the smaller energy gap and better symmetry of electron cloud, anthracene was easier to be excited under the excitation of longer wavelength with higher fluorescence intensity. The density functional theory is a good tool to estimate the luminous capability of organic matters.
RESUMEN
INTRODUCTION: Parietal pleurectomy with bullectomy has been established as an effective method for preventing the recurrence of primary spontaneous pneumothorax (PSP). Our center introduced enhanced technical measures in uniportal thoracoscopic parietal pleurectomy with bullectomy for patients with PSP, aiming to document our initial experience and assess the procedure's effectiveness in preventing the recurrence of PSP. METHODS: We analyzed the clinical data of 86 patients with PSP who underwent the improved uniportal thoracoscopic parietal pleurectomy with bullectomy between July 2019 and August 2022. During the procedure, the parietal pleura above the second intercostal space was stripped but not removed. Instead, it was retained in the thoracic cavity using a piece of pedunculated pleura. Subsequently, the stumps of the lung were covered by the preserved parietal pleura. RESULTS: The results of the study showed that the mean operative time was 59.87 ± 16.93 min, and the postoperative drainage duration averaged 3.94 ± 2.17 days. The mean intraoperative blood loss was 24.33 ± 48.91 ml, and the mean postoperative drainage volume was 289.00 ± 170.03 ml. Prolonged air leakage for more than 5 days was observed in five patients (5.81%), but no other postoperative complications were recorded. During the follow-up, one patient (1.16%) experienced a recurrence of pneumothorax. CONCLUSIONS: The perioperative results of bullectomy with the improved pleurectomy technique are deemed satisfactory. The various technical steps attempted at our center are found to be feasible and safe, and they may contribute to reducing the rates of recurrence in PSP.
Asunto(s)
Neumotórax , Procedimientos Quirúrgicos Torácicos , Humanos , Neumotórax/cirugía , Estudios Retrospectivos , Pleura/cirugía , Complicaciones Posoperatorias , Recurrencia , Cirugía Torácica Asistida por Video/métodos , Resultado del TratamientoRESUMEN
Epigenetic has been implicated in pulmonary fibrosis. However, there is limited information regarding the biological role of the epigenetic reader MeCP2 in pulmonary fibrosis. The aim of this study was to investigate the role of MeCP2 and its target WIF1 in pulmonary fibrosis. The pathological changes and collagen depositions was analyzed by H&E, Masson's Trichrome Staining and Sirius Red staining. MeCP2, WIF1, α-SMA, Wnt1, ß-catenin, and collagen I expression were analyzed by western blotting, RT-qPCR, immunohistochemistry, immunofluorescence, respectively. The effects of MeCP2 on pulmonary fibrosis involve epigenetic mechanisms, using cultured cells, animal models, and clinical samples. Herein, our results indicated that MeCP2 level was up-regulated, while WIF1 was decreased in Bleomycin (BLM)-induced mice pulmonary fibrosis tissues, patients pulmonary fibrosis tissues and TGF-ß1-induced lung fibroblast. Knockdown of MeCP2 by siRNA can rescue WIF1 downregulation in TGF-ß1-induced lung fibroblast, inhibited lung fibroblast activation. The DNA methylation inhibitor 5-azadC-treated lung fibroblasts have increased WIF1 expression with reduced MeCP2 association. In addition, we found that reduced expression of WIF1 caused by TGF-ß1 is associated with the promoter methylation status of WIF1. Moreover, in vivo studies revealed that knockdown of MeCP2 mice exhibited significantly ameliorated pulmonary fibrosis, decreased interstitial collagen deposition, and increased WIF1 expression. Taken together, our study showed that epigenetic reader MeCP2 repressed WIF1 facilitates lung fibroblast proliferation, migration and pulmonary fibrosis.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína 2 de Unión a Metil-CpG , Fibrosis Pulmonar , Animales , Ratones , Bleomicina/toxicidad , Proliferación Celular , Colágeno/metabolismo , Epigénesis Genética , Fibroblastos , Pulmón , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
RESUMEN
BACKGROUND: Influenza A virus (IAV) triggers acute exacerbation of chronic obstructive pulmonary disease (AECOPD), but the molecular mechanisms remain unclear. In this study, we investigated the role of IAV induced NLRP3 inflammasome activation to increase airway inflammation response in the progression of AECOPD. METHODS: Human bronchial epithelial cells were isolated and cultured from normal and COPD bronchial tissues and co-cultured with IAV. The NLRP3 inflammasome associated genes were identified using RNA sequencing, and the expressions of NLRP3 inflammasome components were measured using qRT-PCR and western blot after cells were transfected with siRNA and treated with MCC950. Moreover, IAV-induced COPD rat models were established to confirm the results; 37 AECOPD patients were included to measure the serum and bronchoalveolar lavage fluid (BALF) of interleukin (IL)-18 and IL-1ß. RESULTS: Increased levels of NLRP3 inflammasome components were not seen until 6 h post-inoculation in normal cells. However, both cell groups reached peak NLRP3 level at 12 h post-inoculation and maintained it for up to 24 h. ASC, Caspase-1, IL-1ß and IL-18 were also elevated in a similar time-dependent pattern in both cell groups. The mRNA and protein expression of the NLRP3 inflammasome components were decreased when COPD cells treated with siRNA and MCC950. In COPD rats, the NLRP3 inflammasome components were elevated by IAV. MCC950 alleviated lung damage, improved survival time, and reduced NLRP3 inflammasome components expression in COPD rats. Additionally, the serum and BALF levels of IL-1ß and IL-18 were increased in AECOPD patients. CONCLUSIONS: NLRP3 inflammasome is activated in COPD patients as a pre-existing condition that is further exacerbated by IAV infection.
RESUMEN
Background: Left thoracic approach (LTA) has been a favorable selection in surgical treatment for esophageal cancer (EC) patients in China before minimally invasive esophagectomy (MIE) is popular. This study aimed to demonstrate whether right thoracic approach (RTA) is superior to LTA in the surgical treatment of middle and lower thoracic esophageal squamous cell carcinoma (TESCC). Methods: Superiority clinical trial design was used for this multicenter randomized controlled two-parallel group study. Between April 2015 and December 2018, cT1b-3N0-1M0 TESCC patients from 14 centers were recruited and randomized by a central stratified block randomization program into LTA or RTA groups. All enrolled patients were followed up every three months after surgery. The software SPSS 20.0 and R 3.6.2. were used for statistical analysis. Efficacy and safety outcomes, 3-year overall survival (OS) and disease-free survival (DFS) were calculated and compared using the Kaplan-Meier method and the log-rank test. Results: A total of 861 patients without suspected upper mediastinal lymph nodes (umLN) were finally enrolled in the study after 95 ineligible patients were excluded. 833 cases (98.7%) were successfully followed up until June 1, 2020. Esophagectomies were performed via LTA in 453 cases, and via RTA in 408 cases. Compared with the LTA group, the RTA group required longer operating time (274.48±78.92 vs. 205.34±51.47 min, P<0.001); had more complications (33.8% vs. 26.3% P=0.016); harvested more lymph nodes (LNs) (23.61±10.09 vs. 21.92±10.26, P=0.015); achieved a significantly improved OS in stage IIIa patients (67.8% vs. 51.8%, P=0.022). The 3-year OS and DFS were 68.7% and 64.3% in LTA arm versus 71.3% and 63.7% in RTA arm (P=0.20; P=0.96). Conclusions: Esophagectomies via both LTA and RTA can achieve similar outcomes in middle or lower TESCC patients without suspected umLN. RTA is superior to LTA and recommended for the surgical treatment of more advanced stage TESCC due to more complete lymphadenectomy. Trial Registration: ClinicalTrials.gov NCT02448979.
RESUMEN
A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 µmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.
Asunto(s)
Materiales Biocompatibles/química , Gadolinio/química , Grafito/química , Imagen por Resonancia Magnética , Puntos Cuánticos/química , Animales , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Ensayo de Materiales , Ratones , Tamaño de la PartículaRESUMEN
Commercial gadolinium-based materials have been widely used as contrast agents for magnetic resonance imaging (MRI), but the high toxicity of leaking free Gd3+ ions still raises biosafety concerns. Here, we develop a novel, safe, and efficient MRI contrast agent based on a stable Fe(III) complex of fluorine and nitrogen co-doped carbon dots (F,N-CDs) that was prepared from glucose and levofloxacin by a simple microwave-assisted thermal decomposition method. The obtained Fe3+@F,N-CD complex exhibits higher longitudinal relaxivity ( r1 = 5.79 mM-1·s-1) than that of the control samples of the Fe3+@CD complex ( r1 = 4.23 mM-1 s-1) and free Fe3+ ( r1 = 1.59 mM-1 s-1) in aqueous solution, as assessed by a 1.5 T NMR analyzer. More importantly, the Fe3+@F,N-CD complex is very stable with a large coordination constant of 1.06 × 107 in aqueous medium. While incubated with HeLa cells, the Fe3+@F,N-CD complex shows clear MR images, demonstrating that it has potential to be an excellent MRI contrast agent. Furthermore, in vivo MRI experiments indicate that the Fe3+@F,N-CD complex provides high-resolution MRI pictures of 4T1 tumor bearing BALB/c mice 15 min after injection and can be completely excreted 2 h after administration. No cytotoxicity was observed with F,N-CDs and Fe concentration up to 0.2 mg/mL and 0.3 mM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay, respectively. The possible mechanism of the enhanced MRI effect of the Fe3+@F,N-CD complex is therefore proposed. The extremely low toxicity, high r1 relaxivity, strong photoluminescence, and low synthetic cost enable the Fe3+@F,N-CD complex to be a safe and promising T1-weighted MRI contrast agent for clinical applications.
Asunto(s)
Carbono , Medios de Contraste , Compuestos Férricos , Flúor , Imagen por Resonancia Magnética , Nanopartículas , Neoplasias Experimentales/diagnóstico por imagen , Nitrógeno , Animales , Carbono/química , Carbono/farmacología , Medios de Contraste/química , Medios de Contraste/farmacología , Compuestos Férricos/química , Compuestos Férricos/farmacología , Flúor/química , Flúor/farmacología , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Nitrógeno/química , Nitrógeno/farmacologíaRESUMEN
Minimally invasive esophagectomy is now accepted as a regular treatment modality for esophageal cancer. Upper gastrointestinal (GI) bleeding is a common postoperative adverse event of esophagectomy. However, there are very few reports in the literature on endoscopic management of early upper GI bleeding after an esophagectomy. Here, we report the successful management of such an early case of GI bleeding after thoracolaparoscopic esophagectomy by the use of endoscopic intrathoracic anastomosis.
Asunto(s)
Neoplasias Esofágicas/cirugía , Esofagectomía/efectos adversos , Hemorragia Gastrointestinal/cirugía , Hemostasis Quirúrgica/métodos , Hemorragia Posoperatoria/diagnóstico , Anastomosis Quirúrgica/efectos adversos , Endoscopía/métodos , Neoplasias Esofágicas/patología , Esofagectomía/métodos , Unión Esofagogástrica/cirugía , Esofagoscopía/métodos , Estudios de Seguimiento , Hemorragia Gastrointestinal/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Hemorragia Posoperatoria/cirugía , Reoperación/métodos , Medición de Riesgo , Resultado del TratamientoRESUMEN
We describe a pursestring stapled anastomotic technique for minimally invasive Ivor Lewis esophagectomy, in which a pursestring is hand sewn through the muscular layer of the intact esophagus by using one piece of 3-0 Prolene suture. The anvil of a circular stapler is inserted through an esophageal incision, 2 to 3 cm distal to the pursestring, and secured by the pursestring. The esophagus is transected, and the mucosa of the proximal stump is retained 5 mm longer than the adjacent muscular layer. The gastroesophageal anastomosis is completed and embedded by using the previously reserved 2 cm of mediastinal pleura.