Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(5): 98, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592431

RESUMEN

KEY MESSAGE: The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.


Asunto(s)
Citocininas , Tricomas , Tricomas/genética , Glicósidos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
2.
Environ Pollut ; 345: 123496, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316253

RESUMEN

Straw returning is a crucial agronomic practice in fields due to its various benefits. However, effects and mechanisms of straw with different fermentation degrees on Se and Cd bioavailability have not been sufficiently investigated. In this study, straw with different fermentation degrees were applied to a Cd-contaminated seleniferous soil to investigate their effects on Se and Cd bioavailability. Results revealed that the effects of straw application on Se/Cd bioavailability in soil depended on the fermentation degrees of straw. Both original and slightly fermented straw had pronounced impacts on microbial iron reduction compared to fully fermented straw, and thus led to a significant increase in Se and Cd bioavailability. The linear discriminant analysis effect size (LEfSe) showed that norank_f_Symbiobacteraceae, Micromonospora, WCHB1-32, Ruminiclostrdium, and Cellulomonas were the major biomarkers at genus level in straw application soils, additional network analysis and random forest analysis suggested that Ruminiclostrdium and Cellulomonas might be implicated in microbial iron reduction. Furthermore, the microbial iron reduction had negative effects on mineral-associated Se with coefficient of -0.81 and positive effects on mineral-associated Cd with coefficient of 0.72, while Mn fractions exhibited positive effects on mineral-associated Se with a coefficient of 0.53 and negative effects on mineral-associated Cd. In conclusion, straw with different fermentation degrees governed Se and Cd mobility by regulating abundance of Ruminiclostrdium and Cellulomonas, subsequently affecting Fe and Mn fractions and consequently influencing Se and Cd bioavailability.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Disponibilidad Biológica , Fermentación , Contaminantes del Suelo/análisis , Suelo , Minerales , Hierro/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA