Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nanotechnology ; 34(26)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36962937

RESUMEN

To strengthen the downscaling potential of top-gate amorphous oxide semiconductor (AOS) thin-film transistors (TFTs), the ultra-thin gate insulator (GI) was comparatively implemented using the atomic-layer-deposited (ALD) AlOxand HfOx. Both kinds of high-kGIs exhibit good insulating properties even with the physical thickness thinning to 4 nm. Compared to the amorphous indium-gallium-zinc oxide (a-IGZO) TFTs with 4 nm AlOxGI, the 4 nm HfOxenables a larger GI capacitance, while the HfOx-gated TFT suffers higher gate leakage current and poorer subthreshold slope, respectively originating from the inherently small band offset and the highly defective interface between a-IGZO and HfOx. Such imperfect a-IGZO/HfOxinterface further causes noticeable positive bias stress instability. Both ALD AlOxand HfOxwere found to react with the underneath a-IGZO channel to generate the interface defects, such as metal interstitials and oxygen vacancies, while the ALD process of HfOxgives rise to a more severe reduction of a-IGZO. Moreover, when such a defective interface is covered by the top gate, it cannot be readily restored using the conventional oxidizing post-treatments and thus desires the reduction-resistant pre-treatments of AOSs.

2.
Opt Express ; 30(22): 39904-39910, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298932

RESUMEN

In this work, a 25 inch (400 × 500 mm) transparency-adjustable mini-LED (TA-MLED) display is constructed of a transparent mini-LED (T-MLED) screen and an electrochromic (EC) shutter. The shutter shows a high transmittance of 86.5% with imperceptible color shift, enabling a perfect vision experience for see-through application. Furthermore, the response speed of the shutter is accelerated by optimal designs in splicing and driving. The coloring time is 55 s, and bleaching time is 36 s. Transmittance of the TA-MLED could be modulated from 3% to 60%. The transparency-adjustable property extends availability of the see-through display screens under strong light irradiations. The T-MLED's color gamut in CIE 1976 shrinks from 145.1% sRGB to 3.6% sRGB with 5161 cd/m2 of backside illumination, and is significantly enhanced to 83.5% sRGB with the active EC shutter.

3.
Nanotechnology ; 31(37): 375401, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32480392

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) have attracted significant attention due to the distinguishing characteristics of zinc metal, including its low price, abundance in earth, safety and high theoretical specific capacity of 820 mAh g-1. Manganese dioxide (MnO2) is a promising cathode for ZIBs due to high theoretical specific capacity, high discharge voltage plateau, cost-effectiveness and nontoxicity. However, the low electronic conductivity and volumetric changes during electrochemical cycling hinder its practical utilization. Herein, we demonstrate a polyacrylic acid (PAA)-assisted assembling strategy to fabricate freestanding and flexible MnO2/carbon nanotube/PAA (MnO2/CNT/PAA) cathodes for ZIBs. PAA plays an important role in providing excellent mechanical properties to the free-standing electrode. Moreover, the presence of CNT forms an electron conductive network, and the porous structure of MnO2/CNT/PAA electrode accommodates the volumetric variations of MnO2 during charge/discharge cycling. The as-fabricated quasi-solid-state Zn-MnO2/CNT/PAA battery delivers a high charge storage capacity of 302 mAh g-1 at 0.3 A g-1 and retains 82% of the initial capacity after 1000 charge/discharge cycles at 1.5 A g-1. The calculated volumetric energy density of Zn-MnO2/CNT/PAA battery is 8.5 mW h cm-3 (with a thickness of 0.08 cm), which is significantly higher than the reported alkali-ion batteries (1.3 mW h cm-3) and comparable to supercapacitors (6.8 mW h cm-3) and Ni-Zn batteries (7.76 mW h cm-3). The current work demonstrates that free-standing MnO2/CNT/PAA composite is a promising cathode for ZIBs.

4.
Chem Rec ; 19(8): 1729-1752, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30698895

RESUMEN

The unique features of solution-processed quantum dots (QDs) including emission tunability in the visible range, high-quality saturated color and outstanding intrinsic stability in environment are highly desired in various application fields. Especially, for the preparation of wide color gamut displays, QDs with high photoluminescence quantum yield are deemed as the optimal fluorescent emitter that has been utilized in the backlight for liquid crystal display. Nevertheless, the commercialization of electrically driven self-emissive quantum dot light-emitting diode (QLED) display is the ultimate target due to its merits of high contrast, slim configuration and compatibility with flexible substrate. Through the great efforts devoted to material engineering and device configuration, astonishing progresses have been made in device performance, giving the QLED technology a great chance to compete with other counterparts for next-generation displays. In this review, we retrospect the development roadmap of QLED technology and introduce the essential principles in the QLED devices. Moreover, we discuss the key factors that affect the QLED efficiency and lifetime. Finally, the advances in device architectures and pixel patterning are also summarized.

5.
Nanotechnology ; 30(7): 075202, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30524051

RESUMEN

Electron transport layer (ETL) plays an important role in realizing efficient and stable perovskite solar cells (PSCs). There are continuous efforts in developing new types of low cost ETLs with improved conductivity and compatibility with perovskite and the conducting electrode. Here, in order to obtain high efficient and stable PSCs on ZnO:Al (AZO) substrate, reduced graphene oxide (rGO) is incorporated into SnO2 nanoparticles to form composite ETL. For planar PSC on AZO substrates, SnO2-rGO with a low incorporation ratio of 3 wt% rGO significantly enhances the device short circuit current density (J sc) and the fill factor when compared to the device with pristine SnO2 ETL, leading to an overall power conversion efficiency of 16.8% with negligible hysteresis. The effectiveness of the excited charge transfer process of SnO2-rGO ETL is revealed by time-resolved photoluminescence decay, and by electrochemical impedance spectrum measurements. Furthermore, the solar cell stability is also enhanced due to the incorporation of rGO in the ETL. This work provides a low cost and effective ETL modification strategy for achieving high performance planar PSCs.

6.
Nanotechnology ; 27(17): 175201, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26978061

RESUMEN

We present here solution-processed photodetectors based on a methyl ammonium lead iodide perovskite (MAPbI3) and nanocrystalline graphite (NCG) hybrid composite. The highest responsivity of the best MAPbI3/NCG photodetector was 795 mA W(-1) at 500 nm visible light, which is almost twice as high as that of the NCG-free MAPbI3 photodetector (408 mA W(-1)). The enhanced performance of the MAPbI3/NCG photodetector arises from the improved charge extraction at the MAPbI3/NCG interface. The dependence of photodetector performance on the mass percentage of NCG (the ratio of NCG to MAPbI3) in the hybrid materials is also reported here, and is correlated to the fabrication process. Moreover, by comparing the responsivity of the devices with different channel lengths, we show that the performance of hybrid photodetectors can be further tuned by tailoring the channel length.

7.
Micromachines (Basel) ; 15(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542647

RESUMEN

This study reveals the pronounced density of oxygen vacancies (Vo) at the back channel of back-channel-etched (BCE) a-InGaZnO (a-IGZO) thin-film transistors (TFTs) results from the sputtered deposition rather than the wet etching process of the source/drain metal, and they are distributed within approximately 25 nm of the back surface. Furthermore, the existence and distribution depth of the high density of Vo defects are verified by means of XPS spectra analyses. Then, the mechanism through which the above Vo defects lead to the instability of BCE a-IGZO TFTs is elucidated. Lastly, it is demonstrated that the device instability under high-humidity conditions and negative bias temperature illumination stress can be effectively alleviated by etching and thus removing the surface layer of the back channel, which contains the high density of Vo defects. In addition, this etch method does not cause a significant deterioration in the uniformity of electrical characteristics and is quite convenient to implement in practical fabrication processes. Thus, a novel and effective solution to the device instability of BCE a-IGZO TFTs is provided.

8.
J Hazard Mater ; 474: 134667, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820755

RESUMEN

Smoldering combustion applications in energy and environmental fields have attracted increasing research attention in recent years. Smoldering has demonstrated considerable green advantages, such as having a low carbon footprint and being sustainable, for remediation of organic-contaminated soil and disposal of high-moisture, low-calorific value, slurry-type organic waste due to its self-sustaining reaction characteristic. This review aims to analyze and summarize studies on smoldering applications to refine the critical components of applied smoldering systems, key reaction characteristics, and corresponding influencing conditions that affect their effectiveness. Furthermore, the common characteristics and influencing factors of different smoldering application scenarios are compared to provide a comprehensive reference for commercial applications. Thus, this paper specifically includes an overview of the impact of inert porous media, combustible material, and oxidants in applied smoldering systems; a review of the research status of the three key reaction characteristics, including peak temperature, smoldering front propagation velocity, and self-sustainability; a summary of typical influencing factors, disposal material characteristics, and control conditions in the two mainstream application directions, which are remediation of contaminated soil and disposal of organic waste; and a comparative analysis of the common modes of applied smoldering beyond the lab scale. As a technically effective and energy-efficient emerging technology, the prospects of smoldering as a robust treatment process in environmental pollution cleanup are presented.

9.
ACS Appl Mater Interfaces ; 16(26): 34377-34385, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904479

RESUMEN

The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.

10.
Nat Commun ; 15(1): 794, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278795

RESUMEN

Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges for semiconductor-based ENZ performances. While their optical properties are temperature-sensitive, there is no systematic analysis on such crucial dependence. Here, we experimentally report the linear and nonlinear thermo-optic ENZ effects in indium tin oxide. We characterize its temperature-dependent optical properties with ENZ frequencies covering the telecommunication O-band, C-band, and 2-µm-band. Depending on the ENZ frequency, it exhibits an unprecedented 70-93-THz-broadband 660-955% enhancement over the conventional thermo-optic effect. The ENZ-induced fast-varying large group velocity dispersion up to 0.03-0.18 fs2nm-1 and its temperature dependence are also observed for the first time. Remarkably, the thermo-optic nonlinearity demonstrates a 1113-2866% enhancement, on par with its reported ENZ-enhanced Kerr nonlinearity. Our work provides references for packaged ENZ-enabled photonic integrated circuit designs, as well as a new platform for nonlinear photonic applications and emulations.

11.
Microsyst Nanoeng ; 10: 80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911342

RESUMEN

With the rapid development of the Internet of Things (IoTs), wearable sensors are playing an increasingly important role in daily monitoring of personal health and wellness. The signal-to-noise-ratio has become the most critical performance factor to consider. To enhance it, on the one hand, good sensing materials/devices have been employed; on the other hand, signal amplification and noise reduction circuits have been used. However, most of these devices and circuits work in an active sampling mode, requiring frequent data acquisition and hence, entailing high-power consumption. In this scenario, a flexible and wearable event-triggered sensor with embedded signal amplification without an external power supply is of great interest. Here, we report a flexible two-terminal piezotronic n-p-n bipolar junction transistor (PBJT) that acts as an autonomous and highly sensitive, current- and/or voltage-mediated pressure sensor. The PBJT is formed by two back-to-back piezotronic diodes which are defined as emitter-base and collector-base diodes. Upon force exertion on the emitter side, as a result of the piezoelectric effect, the emitter-base diode is forward biased while the collector-base diode is reverse biased. Due to the inherent BJT amplification effect, the PBJT achieves record-high sensitivities of 139.7 kPa-1 (current-based) and 88.66 kPa-1 (voltage-based) in sensing mode. The PBJT also has a fast response time of <110 ms under exertion of dynamic stimuli ranging from a flying butterfly to a gentle finger touch. Therefore, the PBJT advances the state of the art not only in terms of sensitivity but also in regard to being self-driven and autonomous, making it promising for pressure sensing and other IoT applications.

12.
Adv Mater ; : e2404626, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825781

RESUMEN

Van der Waals (vdW) integration enables clean contacts for low-dimensional electronic devices. The limitation remains; however, that an additional tunneling contact resistance occurs owing to the inherent vdW gap between the metal and the semiconductor. Here, it is demonstrated from theoretical calculations that stronger non-covalent hydrogen-bonding interactions facilitate electron tunneling and significantly reduce the contact resistance; thus, promising to break the limitations of the vdW contact. π-plane hydrogen-bonding contacts in surface-engineered MXene/carbon nanotube metal/semiconductor heterojunctions are realized, and an anomalous temperature-dependent tunneling resistance is observed. Low-dimensional flexible thin-film transistors integrated by hydrogen-bonding contacts exhibit both excellent flexibility and carrier mobility orders of magnitude higher than their counterparts with vdW contacts. This strategy demonstrates a scalable solution for realizing high-performance and low-power flexible electronics beyond vdW contacts.

13.
ACS Nano ; 18(4): 3362-3368, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227541

RESUMEN

Flexible static random access memory (SRAM) plays an important role in flexible electronics and systems. However, achieving SRAM with a small footprint, high flexibility, and high thermal stability has always been a big challenge. In this work, an ultraflexible six-transistor SRAM with high integration density is realized based on a monolithic three-dimensional (M3D) design. In this design, vertical stacked n-type indium gallium zinc oxide thin film transistors and p-type carbon nanotube transistors share common gate and drain electrodes, respectively, saving interlayer vias used in traditional M3D designs. This compact architecture reduces the footprint of the SRAM cell from a six-transistor to a four-transistor area, saving 33% of the area, and significantly enables the SRAM to have the highest flexibility among the reported ones, withstanding a harsh deforming process (6000 cycles of bending at a radius of 500 µm) without performance degradation. Moreover, this design facilitates the thermal stability of the SRAM under high temperature (333 K). It also exhibits great static and dynamic performance, with the highest normalized hold noise margin of 73.6%, a maximum gain of 151.2, and a minimum static power consumption of 3.15 µW in hold operation among the reported flexible SRAMs. This demonstration provides possibilities for SRAMs to be used in advanced wearable system applications.

14.
J Nanosci Nanotechnol ; 13(7): 5154-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23901545

RESUMEN

We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.


Asunto(s)
Aluminio/química , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Transistores Electrónicos , Óxido de Zinc/química , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Temperatura
15.
Front Neurosci ; 17: 1110942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777632

RESUMEN

Methylmalonic acidemia (MMA) is a genetic disease of abnormal organic acid metabolism, which is one of the important factors affecting the survival rate and quality of life of newborns or infants. Early detection and diagnosis are particularly important. The diagnosis of MMA mainly depends on clinical symptoms, newborn screening, biochemical detection, gene sequencing and neuroimaging diagnosis. The accumulation of methylmalonic acid and other metabolites in the body of patients causes brain tissue damage, which can manifest as various degrees of intellectual disability and severe neurological dysfunction. Neuroimaging examination has important clinical significance in the diagnosis and prognosis of MMA. This review mainly reviews the etiology, pathogenesis, and nervous system development, especially the neuroimaging features of MMA.

16.
Sci Rep ; 13(1): 15333, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714880

RESUMEN

Single image dehazing has received a lot of concern and achieved great success with the help of deep-learning models. Yet, the performance is limited by the local limitation of convolution. To address such a limitation, we design a novel deep learning dehazing model by combining the transformer and guided filter, which is called as Deep Guided Transformer Dehazing Network. Specially, we address the limitation of convolution via a transformer-based subnetwork, which can capture long dependency. Haze is dependent on the depth, which needs global information to compute the density of haze, and removes haze from the input images correctly. To restore the details of dehazed result, we proposed a CNN sub-network to capture the local information. To overcome the slow speed of the transformer-based subnetwork, we improve the dehazing speed via a guided filter. Extensive experimental results show consistent improvement over the state-of-the-art dehazing on natural haze and simulated haze images.

17.
RSC Adv ; 13(21): 14703-14711, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37197679

RESUMEN

Here, a new narrow band gap non-fullerene small molecular acceptor (NFSMA) based on a dithieno-3,2-b:2',3'-dlpyrrole(DTP) unit, namely SNIC-F, was designed and synthesized. Due to the strong electron-donating ability of the DTP-based fused-ring core, SNIC-F showed a strong intramolecular-charge transfer (ICT) effect and thus gave a narrow band gap of 1.32 eV. Benefiting from the low band gap and efficient charge separation, when pairing with a copolymer PBTIBDTT, the device optimized by 0.5% 1-CN gave a high short circuit current (Jsc) of 19.64 mA cm-2. In addition, a high open-circuit voltage (Voc) of 0.83 V was obtained due to the near 0 eV highest occupied molecular orbital (HOMO) offset between PBTIBDTT and SNIC-F. As a result, a high power conversion efficiency (PCE) of 11.25% was obtained, and the PCE was maintained above 9.2% as the active layer thickness increased from 100 nm to 250 nm. Our work indicated that designing a narrow band gap NFSMA-based DTP unit and blending it with a polymer donor with small HOMO offset is an efficient strategy for achieving high performance OSCs.

18.
ACS Appl Mater Interfaces ; 15(29): 35186-35195, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449495

RESUMEN

Epsilon-near-zero (ENZ) materials have attracted great interest due to their exotic linear and nonlinear responses, which makes it significant to tune ENZ wavelengths for wavelength-dependent applications. However, studies to achieve tunability in a wide spectral range and link the fabrication parameters with linear and nonlinear ENZ properties have been uncovered. ENZ indium tin oxide (ITO) nanofilms are fabricated by magnetron sputtering, through which the control of ENZ properties is demonstrated. Factors in the sputtering process, such as the gas ratio and annealing, have a great impact on the ITO samples. Tunable ENZ parameters are listed to provide a beneficial database for ENZ ITO, mainly attributed to the change of carrier concentration. The influence of ENZ parameters on optical characteristics via annealing treatment is further explored. The ENZ wavelength is blue-shifted by 609 nm, and the intrinsic loss is reduced by 63.2%, while the ITO samples exhibit better linear scattering properties and stronger field intensity enhancement. Additionally, the laser testing system illustrates the change from reverse saturable absorption to saturable absorption with an absolute modulation depth of 21.9%, improved by 222.1%, and the nonlinear refractive index n2 and nonlinear absorption coefficient ß are 2.07 × 10-16 m2 W-1 and -3.16 × 10-10 m W-1 for post-annealed ITO samples, respectively. The proposed sputtering protocol offers a feasible technique to control the linear and nonlinear ENZ performance, which has great potential in laser technology and nanophotonics.

19.
IEEE Trans Cybern ; 53(1): 454-467, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34797770

RESUMEN

Despite that convolutional neural networks (CNNs) have shown high-quality reconstruction for single image dehazing, recovering natural and realistic dehazed results remains a challenging problem due to semantic confusion in the hazy scene. In this article, we show that it is possible to recover textures faithfully by incorporating semantic prior into dehazing network since objects in haze-free images tend to show certain shapes, textures, and colors. We propose a semantic-aware dehazing network (SDNet) in which the semantic prior is taken as a color constraint for dehazing, benefiting the acquisition of a reasonable scene configuration. In addition, we design a densely connected block to capture global and local information for dehazing and semantic prior estimation. To eliminate the unnatural appearance of some objects, we propose to fuse the features from shallow and deep layers adaptively. Experimental results demonstrate that our proposed model performs favorably against the state-of-the-art single image dehazing approaches.

20.
ACS Appl Mater Interfaces ; 15(6): 8666-8675, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709447

RESUMEN

An ultrathin atomic-layer-deposited (ALD) AlOx gate insulator (GI) was implemented for self-aligned top-gate (SATG) amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). Although the 4.0-nm thick AlOx exhibited ideal insulating properties, the interaction between ALD AlOx and predeposited a-IGZO caused a relatively defective interface, thus giving rise to hysteresis and bias stress instabilities. As analyzed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and the Hall measurement, the chemical reaction between the ALD precursor and a-IGZO is revealed. This was effectively prevented by preoxidizing a-IGZO with nitrous oxide (N2O) plasma. With 4 nm-AlOx GI and low-defect interfaces, high performance and stability were simultaneously achieved on SATG a-IGZO TFTs, including a near-ideal record-low subthreshold swing of 60.8 mV/dec, a low operation voltage below 0.4 V, a moderate mobility of 13.3 cm2/V·s, a low off-current below 10-13 A, a large on/off ratio over 109, and negligible threshold-voltage shifts less than 0.04 V against various bias-temperature stresses. This work clarifies the vital interfacial reaction between top-gate high-k dielectrics and amorphous oxide semiconductors (AOSs) and further provides a feasible way to remove this obstacle to downscaling SATG AOS TFTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA