Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(9): 4357-4367, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38326940

RESUMEN

Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Purificación del Agua , Hierro
2.
Environ Sci Technol ; 57(8): 3357-3368, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790364

RESUMEN

To cope with the urgent and unprecedented demands for rare earth elements (REEs) in sophisticated industries, increased attention has been paid to REE recovery from recycled streams. However, the similar geochemical behaviors of REEs and transition metals often result in poor separation performance due to nonselectivity. Here, a unique approach based on the selective transformation between ceria sulfation and iron/manganese mineralization was proposed, leading to the enhancement of the selective separation of REEs. The mechanism of the selective transformation of minerals could be ascribed to the distinct geochemical and metallurgical properties of ions, resulting in different combinations of cations and anions. According to hard-soft acid-base (HSAB) theory, the strong Lewis acid of Ce(III) was inclined to combine with the hard base of sulfates (SO42-), while the borderline acid of Fe(II)/Mn(II) prefers to interact with oxygen ions (O2-). Both in situ characterization and density functional theory (DFT) calculation further revealed that such selective transformation might trigger by the generation of an oxygen vacancy on the surface of CeO2, leading to the formation of Ce2(SO4)3 and Fe/Mn spinel. Although the electron density difference of the configurations (CeO2-x-SO4, Fe2O3-x-SO4, and MnO2-x-SO4) shared a similar direction of the electron transfer from the metals to the sulfate-based oxygen, the higher electron depletion of Ce (QCe = -1.91 e) than Fe (QFe = -1.66 e) and Mn (QMn = -1.64 e) indicated the higher stability in the Ce-O-S complex, resulting in the larger adsorption energy of CeO2-x-SO4 (-6.88 eV) compared with Fe2O3-x-SO4 (-3.10 eV) and MnO2-x-SO4 (-2.49 eV). This research provided new insights into the selective transformation of REEs and transition metals in pyrometallurgy and thus offered a new approach for the selective recovery of REEs from secondary resources.


Asunto(s)
Metales de Tierras Raras , Elementos de Transición , Manganeso , Hierro , Adsorción , Sulfatos
3.
Chem Soc Rev ; 51(7): 2710-2758, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35274646

RESUMEN

Nitrate enrichment, which is mainly caused by the over-utilization of fertilisers and industrial sewage discharge, is a major global engineering challenge because of its negative influence on the environment and human health. To solve this serious problem, many technologies, such as the activated sludge method, reverse osmosis, ion exchange, adsorption, and electrodialysis, have been developed to reduce the nitrate levels in water bodies. However, the applications of these traditional techniques are limited by several drawbacks, such as a long sludge retention time, slow kinetics, and undesirable by-products. From an environmental perspective, the most promising nitrate reduction technology is enabled to convert nitrate into benign N2, and features low cost, high efficiency, and environmental friendliness. Recently, electrocatalytic nitrate reduction has been proven by satisfactory research achievements to be one of the most promising methods among these technologies. This review provides a comprehensive account of nitrate reduction using electrocatalysis methods. The fundamentals of electrocatalytic nitrate reduction, including the reaction mechanisms, reactor design principles, product detection methods, and performance evaluation methods, have been systematically summarised. A detailed introduction to electrocatalytic nitrate reduction on transition metals, especially noble metals and alloys, Cu-based electrocatalysts, and Fe-based electrocatalysts is provided, as they are essential for the accurate reporting of experimental results. The current challenges and potential opportunities in this field, including the innovation of material design systems, value-added product yields, and challenges for products beyond N2 and large-scale sewage treatment, are highlighted.


Asunto(s)
Nitratos , Aguas del Alcantarillado , Humanos , Ciclo del Nitrógeno , Óxidos de Nitrógeno
4.
Environ Sci Technol ; 56(20): 14797-14807, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36175172

RESUMEN

The conversion of nitrate to ammonia can serve two important functions: mitigating nitrate pollution and offering a low energy intensity pathway for ammonia synthesis. Conventional ammonia synthesis from electrocatalytic nitrate reduction reactions (NO3RR) is often impeded by incomplete nitrate conversion, sluggish kinetics, and the competition of hydrogen evolution reactions. Herein, atomic Cu sites anchored on micro-/mesoporous nitrogen-doped carbon (Cu MNC) with fine-tuned hydrophilicity, micro-/mesoporous channels, and abundant Cu(I) sites were synthesized for selective nitrate reduction to ammonia, achieving ambient temperature and pressure hydrogenation of nitrate. Laboratory experiments demonstrated that the catalyst has an ammonia yield rate per active site of 5466 mmol gCu-1 h-1 and transformed 94.8% nitrate in wastewater containing 100 mg-N L-1 to near drinking water standard (MCL of 5 mg-N L-1) at -0.64 V vs RHE. Extended X-ray absorption fine structure (EXAFS) and theoretical calculations showed that the coordination environment of Cu(I) sites (Cu(I)-N3C1) localizes the charge around the central Cu atoms and adsorbs *NO3 and *H onto neighboring Cu and C sites with balanced adsorption energy. The Cu(I)-N3C1 moieties reduce the activation energy of rate-limiting steps (*HNO3 → *NO2, *NH2 → *NH3) compared with conventional Cu(II)-N4 and lead to a thermodynamically favorable process to NH3. The as-prepared electrocatalytic cell can run continuously for 84 h (14 cycles) and produce 21.7 mgNH3 with only 5.64 × 10-3 kWh energy consumption, suitable for decentralized nitrate removal and ammonia synthesis from nitrate-containing wastewater.


Asunto(s)
Agua Potable , Nitratos , Amoníaco/química , Carbono , Cobre/química , Hidrógeno , Hidrogenación , Nitratos/química , Nitrógeno , Dióxido de Nitrógeno , Óxidos de Nitrógeno , Aguas Residuales
5.
J Environ Sci (China) ; 118: 140-146, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35305763

RESUMEN

Integrating nanoscale zero-valent iron (nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano- and bio-technologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Purificación del Agua , Hierro/metabolismo , Aguas Residuales
6.
Environ Sci Technol ; 55(17): 11533-11537, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34323474

RESUMEN

Visualizing trace pollutants such as toxic metals and viruses in environmental solids such as soils, sediments, aerosols, and suspended particles in water has long been the holy grail for scientists and engineers. In this Perspective, progress on the state-of-the-art electron tomography is highlighted as an increasingly indispensable tool for visualizing contaminant distribution and transformation in three-dimension (3D), including environmental pollutants at the water-minerals interfaces, toxicology assessment, environmental behavior of viruses in heterogeneous environmental media, etc. Adding a third dimension to the pollutant characterization will surely enrich our understanding on the complex and emerging environmental issues facing the global society, and provide vital support to the ongoing research and development of life-saving mitigation technologies from air filtration, to drinking water purification, to virus disinfection.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Tomografía con Microscopio Electrónico , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 55(19): 12801-12808, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523344

RESUMEN

Reactions of core-shell iron nanoparticles with metal(loid)s in water can form an array of nanostructures such as Ag-seed/dendrite, As-subshell, U-yolk, Co-hollowshell, and Cs-spot. Nonetheless, there is a lack of profound understanding in the genesis of these amazing geometries. Herein, we propose a concept to unravel the interdiffusion between the core-shell iron nanoparticle and metal(loid)s, where several key interactions including the Kirkendall effect, metal(loid) character effect, and reaction condition effect are involved in determining the structure of the final solid reaction products. Particularly, the architectural growths of metal(loid)s with iron nanoparticles in water can be manipulated mutually or singly by the following factors: standard redox potential difference, magnetic property, electrical charge and conductivity, as well as the iron (hydr)oxide shell structure under different solution chemistry and operation conditions. This contribution provides a theoretical basis to rationalize the architectural genesis of various metal(loid)s with iron nanoparticles, which will benefit the real practice for synthesizing functional iron-based nanoparticles and recovering the rare/precious metal(loid)s by iron nanoparticles from water.


Asunto(s)
Metaloides , Metales Pesados , Nanopartículas , Contaminantes del Suelo , Contaminantes Químicos del Agua , Hierro , Metales , Agua , Contaminantes Químicos del Agua/análisis
8.
J Environ Sci (China) ; 81: 28-33, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30975326

RESUMEN

Two challenges persist in the applications of nanoscale zero-valent iron (nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon (MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized (~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area (~500 m2/g) and uniform mesopores (~4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension (~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel (20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0% uptake in 5 min, respectively.


Asunto(s)
Nanopartículas del Metal/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Carbono , Hierro/química , Porosidad , Dióxido de Silicio , Contaminantes Químicos del Agua/química
9.
Chemistry ; 24(58): 15663-15668, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30113103

RESUMEN

All-in-one architectures in which uniform nanoscale zero-valent iron nanoparticles are wrapped in hollow porous carbon shells are highly desirable for environmental applications such as wastewater treatment and for use as catalysts, but their preparation remains a significant challenge. Herein, a spatially confined strategy for the in situ preparation of uniform Fe0 @mC (mC=micro/mesoporous carbon) yolk-shell nanospheres, in which the iron nanoparticles are encapsulated in thin, porous carbon shells, is reported. The elaborately designed Fe0 @mC yolk-shell nanospheres were obtained by utilizing silica- and phenolic-resin-coated magnetite nanoparticle core-shell structures as templates by means of selective etching and in situ thermal reduction. The highly dispersed iron nanoparticles with superior reduction capability can effectively remove metal pollutants (e.g., AuIII , AgI , and CuII ), the carbon shell acts as protective cover and prevents aggregation of iron nanoparticles, and the void space in the capsules serves as a reactor for reduction and catalytic reactions.

10.
Environ Sci Technol ; 52(1): 230-236, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215872

RESUMEN

Excessive nutrients (N and P) are among the most concerned pollutants in surface and ground waters. Herein, we report nanoscale zero-valent iron supported on ordered mesoporous carbon (nZVI@OMC) for electrocatalytic reduction of nitrate (NO3-) to nitrogen gas (N2). This material has a maximum removal capacity of 315 mg N/g Fe and nitrogen selectivity up to 74%. The Fe-C nanocomposite is prepared via a postsynthetic modification including carbon surface oxidation, in-situammonia prehydrolysis of iron precursor and hydrogen reduction. The synthesized materials have large surface areas (660-830 m2/g) and small iron nanoparticles (3-9 nm) uniformly dispersed in the carbon mesochannels. The iron loading can be adjusted in the range of 0-45%. Results demonstrate that the reaction reactivity of electrocatalysis can be fine-tuned by manipulating iron nanoparticle size, degree of crystallization, as well as porous structure. Meanwhile, the small, uniform, and stable iron nanoparticle promotes fast hydrogen generation for rapid cleavage of the N-O bond. Furthermore, this material can maintain its high performance over repetitive experimental cycles. Results suggest a new approach for fast and eco-friendly nitrate reduction and a novel nZVI application.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Carbono , Hierro , Nitratos
11.
J Environ Sci (China) ; 67: 4-13, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29778172

RESUMEN

Solid phase reactions of Cr(VI) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy (Cs-STEM) integrated with X-ray energy-dispersive spectroscopy (XEDS). Near-atomic resolution elemental mappings of Cr(VI)-Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(VI) encapsulation are strongly dependent on the initial concentration of Cr(VI) in solution. Low Cr loading in nZVI (<1.0wt%) promotes the electrochemical oxidation and continuous corrosion of nZVI while high Cr loading (>1.0wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(VI) (e.g., <10mg/L). Whereas the reacted nZVI is quickly coated with a newly-formed layer of 2-4nm in the presence of concentrated Cr(VI) (e.g., >100mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy (XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(III)-Cr(III) (oxy)hydroxides with Cr(VI) adsorbed on the outside surface. The insoluble and insulating Fe(III)-Cr(III) (oxy)hydroxide layer can completely cover the nZVI surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZVI in high Cr(VI) solution is detrimental to the performance of nZVI for Cr(VI) treatment and remediation.


Asunto(s)
Cromo/química , Restauración y Remediación Ambiental/métodos , Compuestos Férricos/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Microscopía Electrónica de Transmisión de Rastreo , Espectroscopía de Fotoelectrones , Extracción en Fase Sólida , Espectrometría por Rayos X
12.
Environ Sci Technol ; 51(4): 2288-2294, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28081365

RESUMEN

A nanostructure-based mechanism is presented on the enrichment, separation, and immobilization of arsenic with nanoscale zero-valent iron (nZVI). The As-Fe reactions are studied with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Near-atomic resolution (<1 nm3) electron tomography discovers a thin continuous layer (23 ± 3 Å) of elemental arsenic sandwiched between the iron oxide shell and the zerovalent iron core. This points to a unique mechanism of nanoencapsulation and proves that the outer layer, especially the Fe(0)-oxide interface, is the edge of the As-Fe reactions. Atomic-resolution imaging on the grain boundary provides strong evidence that arsenic atoms diffuse preferably along the nonequilibrium, high-energy, and defective polycrystalline grain boundary of iron oxides. Results also offer direct evidence on the surface sorption or surface complex formation of arsenate on ferric hydroxide (FeOOH). The core-shell structure and unique properties of nZVI clearly underline rapid separation, large capacity, and stability for the treatment of toxic heavy metals such as cadmium, chromium, arsenic, and uranium.


Asunto(s)
Arseniatos , Hierro/química , Arsénico/química , Metales Pesados , Nanopartículas/química
13.
Environ Sci Technol ; 51(24): 14293-14300, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29149555

RESUMEN

Nanoscale zerovalent iron (nZVI) possesses unique functionalities for metal-metalloid removal and sequestration. So far, direct evidence on the heavy metal-nZVI reactions in the solid phase is still limited due to low concentration of heavy metals and small size of nanoparticles. In this work, angstrom-resolution spectral mappings on the reactions of nZVI with chromate, arsenate, nickel, silver, cesium, and zinc ions are presented. This work was achieved with spherical aberration-corrected scanning transmission electron microscopy integrated with high-sensitivity X-ray energy-dispersive spectroscopy-scanning transmission electron microscopy (XEDS-STEM). Results confirm that iron nanoparticles have a core-shell structure. In addition, the removal mechanism significantly depends on the standard potential E0 (E0 is standard potential w.r.t. standard hydrogen electrode at 25 °C when free ion activity is 1.). For strong oxidizing agents, such as Cr(VI), the removal mechanism is diffusion and encapsulation in the core area of the nZVI particle. For moderate oxidizers, such as As(V) with E0 more positive than that of iron, the removal mechanism is adsorption at the surface, followed by diffusion and encapsulation into the particle between the core and the shell. For metal cations with an E0 close to or more negative than that of iron, such as Cs(I) and Zn(II), the removal mechanism is sorption or surface-complex formation. For metal cations with E0 much more positive than that of iron, such as Ag(I), the removal mechanism is rapid reduction on the surface of nZVI. Meanwhile, metals with E0 slightly more positive than that of iron, such as Ni(II), can be immobilized at the nanoparticle surface via sorption and reduction. The synergetic effects of sorption, reduction, and encapsulation mechanisms of nZVI lead to rapid reactions and high efficiency for treatment and immobilization of many toxic heavy metals. Results also demonstrate that the XEDS-STEM technique is a powerful tool for studying reactions in individual nanoparticles and is particularly valuable for mapping trace-level elements in environmental media.


Asunto(s)
Hierro , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Metales Pesados
14.
J Am Chem Soc ; 137(8): 2788-91, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25689272

RESUMEN

The ability to recover uranium from water is significant because of its potential applications on nuclear fuel capture and mitigation of nuclear wastes. In this work, a unique nanostructure is presented by which trace level (2.32-882.68 µg/L) uranium can be quickly separated from water and encapsulated at the center of zero-valent iron nanoparticles. Over 90% of the uranium is recovered with 1 g/L nanoparticles in less than 2 min. Near atomic-resolution elemental mapping on the U(VI) intraparticle reactions in a single iron nanoparticle is obtained with aberration corrected scanning transmission electron microscopy, which provides direct evidence on U(VI) diffusion, reduction to U(IV), and deposition in the core area.

15.
Analyst ; 139(18): 4512-8, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050411

RESUMEN

An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

16.
Sci Total Environ ; 946: 174399, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960160

RESUMEN

Aggregates of nanoscale zero-valent iron (nZVI) are commonly encountered for nZVI in aqueous solution, particularly during large-scale nZVI applications where nZVI is often in a highly concentrated slurry, and such aggregates lower nZVI mobility during its in-situ remediation applications. Herein, we report that the ball milling is an effective tool to break the nZVI aggregates and thereby improve the nZVI mobility. Results show that the milling (in just five minutes) can break the aggregates of a few tens of microns to less than one micron, which is one-tenth of the size that is acquired via the breakage using the mechanical mixing and ultrasonication. The milling breakage can also improve the efficacy of the chemical conditioning method that is commonly used for the nanoparticle stabilization and dispersion. The milling breakage is further optimized via a study of the milling operational factors including milling time, bead velocity, bead diameter, and chamber porosity, and an empirical equation is proposed combining the bead collision number during the milling. Mechanistic study shows that the high efficacy of the milling to break the aggregates can be explained by the small eddy created by the high shear rate produced by the close contact of the milling beads and may also relate to the direct mechanical pulverization effect. This study provides a high efficacy physical method to break the nanoparticle aggregates. The method can be used to improve the nZVI mobility performance by milling the nZVI slurry before its injection for in-situ remediation, and the milling may also replace the mechanical mixing during the nZVI stabilization via surface modification.

17.
Int J Biol Macromol ; 268(Pt 2): 131625, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631569

RESUMEN

Nano zero-valent iron (nZVI) is an advanced environmental functional material for the degradation of tetrabromobisphenol A (TBBPA). However, high surface energy, self-agglomeration and low electron selectivity limit degradation rate and complete debromination of bare nZVI. Herein, we presented biomass-derived cellulose nanocrystals (CNC) modified nZVI (CNC/nZVI) for enhanced TBBPA removal. The effects of raw material (straw, filter paper and cotton), process (time, type and concentration of acid hydrolysis) and synthesis methods (in-situ and ex-situ) on fabrication of CNC/nZVI were systematically evaluated based on TBBPA removal performance. The optimized CNC-S/nZVI(in) was prepared via in-situ liquid-phase reduction using straw as raw material of CNC and processing through 44 % H2SO4 for 165 min. Characterizations illustrated nZVI was anchored to the active sites at CNC interface through electrostatic interactions, hydrogen bonds and FeO coordinations. The batch experiments showed 0.5 g/L CNC-S/nZVI(in) achieved 96.5 % removal efficiency at pH = 7 for 10 mg/L initial TBBPA. The enhanced TBBPA dehalogenation by CNC-S/nZVI(in), involving in initial adsorption, reduction process and partial detachment of debrominated products, were possibly attributed to elevated pre-adsorption capacity and high-efficiency delivery of electrons synergistically. This study indicated that fine-tuned fabrication of CNC/nZVI could potentially be a promising alternative for remediation of TBBPA-contaminated aquatic environments.


Asunto(s)
Biomasa , Celulosa , Hierro , Nanopartículas , Bifenilos Polibrominados , Bifenilos Polibrominados/química , Celulosa/química , Nanopartículas/química , Hierro/química , Contaminantes Químicos del Agua/química , Adsorción
19.
Chemosphere ; 343: 140212, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742762

RESUMEN

The conventional carboxymethyl cellulose (CMC) stabilization hampered available active sites of adsorption and reduction, due to irregular shape of nanoscale zero-valent iron (nZVI) particles with augmented average size and passivated surface, leading to insufficient removal and poor resistance against complex environmental conditions. Herein, we presented (2,2,6,6-Tetramethylpiperidine-1-oxyl)-mediated (TEMPO-mediated) oxidation of cellulose nanocrystal (TOCNC) scaffolded nZVI (nZVI@TOCNC) with enhanced efficiency for chromium removal in comparison with CMC stabilized nZVI (nZVI@CMC). The anchoring of nZVI at the functional sites of TOCNC was initiated by liquid-phase chemical reduction method. The nZVI@TOCNC showed improved nZVI distribution with uniform particle size and thinner shell (∼1 nm). Characterizations using FT-IR, XPS and XRD demonstrated that bindings between TOCNC and nZVI were through hydrogen bonds, electrostatic attractions, coordination-covalent bonds and bidentate chelation. TOCNC with shorter branch-chain (-COC-) surrounding the nZVI could potentially form a porous and compact "mesh" to rigidly encapsulate nZVI, while CMC wrapped around nZVI in the way of traditional polymeric stabilizers. Thus, 0.5 g/L nZVI@TOCNC achieved 99.96% Cr (Ⅵ) removal efficiency (20 mg/L) at pH = 7 and the removal capacity were up to 55.86 mg/g. The nZVI@TOCNC consistently presented higher removal efficiency than nZVI@CMC under wide pH range (3-7). Cr (Ⅵ) was reduced to Cr (Ⅲ) by nZVI@TOCNC with deposition of CrxFe1-x (OH)3 and Cr2O3. The predominant mechanisms of removal probably consisted of electrostatic attractions, reduction, co-precipitation and surface complexation. The pseudo-second-order kinetic model well-fitted the sorption kinetic, indicating TOCNC scaffold stabilized nZVI for efficient reduction of Cr (Ⅵ) through multi-layer adsorption. As a template and delivery carrier, TOCNC shows promising potential to further improve the capability and practice of nZVI for in situ treatment of industrial waste water with heavy metal pollution.

20.
J Hazard Mater ; 459: 132106, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37506648

RESUMEN

A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA