RESUMEN
Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.
Asunto(s)
Envejecimiento , Amiloide , Amiloidosis , Encéfalo , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Encéfalo/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Placa Amiloide/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismoRESUMEN
The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.
Asunto(s)
Microscopía por Crioelectrón , Pliegue de Proteína , Tauopatías/clasificación , Proteínas tau/química , Proteínas tau/ultraestructura , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Demencia/genética , Dinamarca , Femenino , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestructura , Parálisis Supranuclear Progresiva , Tauopatías/patología , Reino UnidoRESUMEN
Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances1-3. The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls4,5, and genome-wide association studies have identified additional risk factors6. By histology, astrocytic plaques are diagnostic of CBD7,8; by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau9. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease10, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats11-15. This distinguishes such '4R' tauopathies from Pick's disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer's disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)16. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer's disease, Pick's disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.
Asunto(s)
Enfermedades de los Ganglios Basales/patología , Corteza Cerebral/patología , Microscopía por Crioelectrón , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/química , Proteínas tau/ultraestructura , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Enfermedades de los Ganglios Basales/metabolismo , Química Encefálica , Corteza Cerebral/metabolismo , Encefalopatía Traumática Crónica/metabolismo , Encefalopatía Traumática Crónica/patología , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Enfermedad de Pick/metabolismo , Enfermedad de Pick/patología , Pliegue de Proteína , Proteínas tau/metabolismoRESUMEN
Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.
Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Mediador/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Activación Transcripcional/efectos de los fármacosRESUMEN
Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.
Asunto(s)
Neoplasias de la Mama , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteína-Arginina N-Metiltransferasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , Femenino , Animales , Línea Celular Tumoral , Ciclo Celular/genética , Ratones , Metilación , Arginina/metabolismo , Carcinogénesis/genética , Activación TranscripcionalRESUMEN
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1-3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4-7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer's disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Å, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer's and Pick's diseases, and from those formed in vitro12-15. Similar to Alzheimer's disease12,14,16-18, all six brain tau isoforms assemble into filaments in CTE, and residues K274-R379 of three-repeat tau and S305-R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the ß-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer's disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer's disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases.
Asunto(s)
Encefalopatía Traumática Crónica , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Pliegue de Proteína , Proteínas tau/química , Proteínas tau/ultraestructura , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encefalopatía Traumática Crónica/metabolismo , Encefalopatía Traumática Crónica/patología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Humanos , Masculino , Modelos MolecularesRESUMEN
BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
Panobinostat is a potent pan-HDAC inhibitor that has been tested in multiple studies for the treatment of brain tumors. There have been contrasting views surrounding its efficacy for the treatment of tumors in the CNS following systemic administration when examined in different models or species. We conducted experiments using three different mouse strains or genotypes to have a more comprehensive understanding of the systemic as well as the CNS distributional kinetics of panobinostat. Our study found that panobinostat experienced rapid degradation in vitro in FVB mouse matrices and a faster degradation rate was observed at 37{degree sign}C compared with room temperature and 4{degree sign}C, suggesting that the in vitro instability of panobinostat was due to enzymatic metabolism. Panobinostat also showed inter-strain and inter-species differences in the in vitro plasma stability; and was stable in human plasma. The objective of this study was to examine the in vitro metabolic stability of panobinostat in different matrices and assess the influence of that metabolic stability on the in vivo pharmacokinetics and CNS delivery of panobinostat. Importantly, the plasma stability in various mouse strains was not reflected in the in vivo systemic pharmacokinetic behavior of panobinostat. Several hypotheses arise from this finding, including: the binding of panobinostat to red blood cells, the existence of competing endogenous compounds to enzyme(s), the distribution into tissues with a lower level of enzymatic activity or the metabolism occurring in the plasma is a small fraction of the total metabolism in vivo Significance Statement Panobinostat showed different in vitro degradation in plasma from different mouse strains and genotypes. However, despite the differences surrounding in vitro plasma stability, panobinostat showed similar in vivo pharmacokinetic behavior in different mouse models. This suggests that the inter-strain difference in enzymatic activity did not affect the in vivo pharmacokinetic behavior of panobinostat and its CNS distribution in mice. This lack of translation between in vitro metabolism assays and in vivo disposition can confound drug development.
RESUMEN
Histone deacetylase expression and activity are often dysregulated in central nervous system (CNS) tumors, providing a rationale for investigating histone deacetylase inhibitors (HDACIs) in selected brain tumor patients. Although many HDACIs have shown potential in in vitro studies, they have had modest efficacy in vivo This lack of activity could be due to insufficient CNS exposure to the unbound drug. In this study, we investigated the systemic pharmacokinetics and subsequent CNS distribution of two potent HDACIs, vorinostat and quisinostat, in the murine model. Both compounds undergo in vitro degradation in mouse plasma, requiring precautions during sample processing. They also have short half-lives in vivo, in both plasma and CNS, which may lead to diminished efficacy. Transgenic transporter-deficient mouse models show that the CNS delivery of vorinostat was not limited by the two major blood-brain barrier efflux transporters, p-glycoprotein and breast-cancer-resistance protein. Vorinostat had an unbound CNS tissue-to-plasma partition coefficient of 0.06 {plus minus} 0.02. Conversely, the exposure of unbound quisinostat in the brain was only 0.02 {plus minus} 0.001 of that in the plasma, and the CNS distribution of quisinostat was limited by the activity of p-glycoprotein. To gain further context for these findings, the CNS distributional kinetics for vorinostat and quisinostat were compared to another hydroxamic acid HDACI, panobinostat. A comprehensive understanding of the CNS target exposure to unbound HDACI, along with known potencies from in vitro testing, can inform the prediction of a therapeutic window for HDACIs that have limited CNS exposure to unbound drug and guide targeted dosing strategies. Significance Statement This study indicates that quisinostat and vorinostat are susceptible to enzymatic degradation in the plasma, and to a lesser degree, in the target CNS tissues. Employing techniques that minimize the post-sampling degradation in plasma, brain and spinal cord, accurate CNS distributional kinetic parameters for these potentially useful compounds were determined. A knowledge of CNS exposure (Kp,uu), time to peak, and duration can inform dosing strategies in preclinical and clinical trials in selected CNS tumors.
RESUMEN
Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias Encefálicas , Fármacos Sensibilizantes a Radiaciones , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Masculino , Femenino , Relación Dosis-Respuesta a Droga , Distribución Tisular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2RESUMEN
Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro-in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT: This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Animales , Ratones , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Temozolomida/uso terapéutico , Temozolomida/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/metabolismo , Distribución Tisular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Femenino , Neoplasias Encefálicas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Pirimidinas/farmacologíaRESUMEN
A critical issue of drug risk-benefit evaluation is to determine the frequencies of drug side effects. Randomized controlled trail is the conventional method for obtaining the frequencies of side effects, while it is laborious and slow. Therefore, it is necessary to guide the trail by computational methods. Existing methods for predicting the frequencies of drug side effects focus on modeling drug-side effect interaction graph. The inherent disadvantage of these approaches is that their performance is closely linked to the density of interactions but which is highly sparse. More importantly, for a cold start drug that does not appear in the training data, such methods cannot learn the preference embedding of the drug because there is no link to the drug in the interaction graph. In this work, we propose a new method for predicting the frequencies of drug side effects, DSGAT, by using the drug molecular graph instead of the commonly used interaction graph. This leads to the ability to learn embeddings for cold start drugs with graph attention networks. The proposed novel loss function, i.e. weighted $\varepsilon$-insensitive loss function, could alleviate the sparsity problem. Experimental results on one benchmark dataset demonstrate that DSGAT yields significant improvement for cold start drugs and outperforms the state-of-the-art performance in the warm start scenario. Source code and datasets are available at https://github.com/xxy45/DSGAT.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Benchmarking , Humanos , Programas InformáticosRESUMEN
MOTIVATION: A critical issue in drug benefit-risk assessment is to determine the frequency of side effects, which is performed by randomized controlled trails. Computationally predicted frequencies of drug side effects can be used to effectively guide the randomized controlled trails. However, it is more challenging to predict drug side effect frequencies, and thus only a few studies cope with this problem. RESULTS: In this work, we propose a neighborhood-regularization method (NRFSE) that leverages multiview data on drugs and side effects to predict the frequency of side effects. First, we adopt a class-weighted non-negative matrix factorization to decompose the drug-side effect frequency matrix, in which Gaussian likelihood is used to model unknown drug-side effect pairs. Second, we design a multiview neighborhood regularization to integrate three drug attributes and two side effect attributes, respectively, which makes most similar drugs and most similar side effects have similar latent signatures. The regularization can adaptively determine the weights of different attributes. We conduct extensive experiments on one benchmark dataset, and NRFSE improves the prediction performance compared with five state-of-the-art approaches. Independent test set of post-marketing side effects further validate the effectiveness of NRFSE. AVAILABILITY AND IMPLEMENTATION: Source code and datasets are available at https://github.com/linwang1982/NRFSE or https://codeocean.com/capsule/4741497/tree/v1.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Algoritmos , Benchmarking , Distribución Normal , ProbabilidadRESUMEN
BACKGROUND: Propofol is a widely used anesthetic and sedative, which has been reported to exert an anti-inflammatory effect. TLR4 plays a critical role in coordinating the immuno-inflammatory response during sepsis. Whether propofol can act as an immunomodulator through regulating TLR4 is still unclear. Given its potential as a sepsis therapy, we investigated the mechanisms underlying the immunomodulatory activity of propofol. METHODS: The effects of propofol on TLR4 and Rab5a (a master regulator involved in intracellular trafficking of immune factors) were investigated in macrophage (from Rab5a-/- and WT mice) following treatment with lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) in vitro and in vivo, and peripheral blood monocyte from sepsis patients and healthy volunteers. RESULTS: We showed that propofol reduced membrane TLR4 expression on macrophages in vitro and in vivo. Rab5a participated in TLR4 intracellular trafficking and both Rab5a expression and the interaction between Rab5a and TLR4 were inhibited by propofol. We also showed Rab5a upregulation in peripheral blood monocytes of septic patients, accompanied by increased TLR4 expression on the cell surface. Propofol downregulated the expression of Rab5a and TLR4 in these cells. CONCLUSIONS: We demonstrated that Rab5a regulates intracellular trafficking of TLR4 and that propofol reduces membrane TLR4 expression on macrophages by targeting Rab5a. Our study not only reveals a novel mechanism for the immunomodulatory effect of propofol but also indicates that Rab5a may be a potential therapeutic target against sepsis.
Asunto(s)
Propofol , Sepsis , Ratones , Humanos , Animales , Propofol/farmacología , Propofol/uso terapéutico , Propofol/metabolismo , Receptor Toll-Like 4/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Sepsis/complicaciones , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismoRESUMEN
BACKGROUND: Though several nomograms have been established to predict the survival probability of patients with small-cell lung cancer (SCLC), none involved enough variables. This study aimed to construct a novel prognostic nomogram and compare its performance with other models. METHODS: Seven hundred twenty-two patients were pathologically diagnosed with SCLC in Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University from January 2016 to December 2018. We input Forty-one factors by reviewing the medical records. The nomogram was constructed based on the variables identified by univariate and multivariate analyses in the training set and validated in the validation set. Then we compared the performance of the models in terms of discrimination, calibration, and clinical net benefit. RESULTS: There were eight variables involved in the nomogram: gender, monocyte (MON), neuron-specific enolase (NSE), cytokeratin 19 fragments (Cyfra211), M stage, radiotherapy (RT), chemotherapy cycles (CT cycles), and prophylactic cranial irradiation (PCI). The calibration curve showed a good correlation between the nomogram prediction and actual observation for overall survival (OS). The area under the curve (AUC) of the nomogram was higher, and the Integrated Brier score (IBS) was lower than other models, indicating a more accurate prediction. Decision curve analysis (DCA) showed a significant improvement in the clinical net benefit compared to the other models. CONCLUSIONS: We constructed a novel nomogram to predict OS for patients with SCLC using more comprehensive and objective variables. It performed better than existing models and would assist clinicians in individually estimating risk and making a therapeutic regimen.
Asunto(s)
Neoplasias Pulmonares , Nomogramas , Carcinoma Pulmonar de Células Pequeñas , Humanos , Masculino , Femenino , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/patología , Persona de Mediana Edad , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Anciano , Pronóstico , Adulto , Estudios Retrospectivos , Estadificación de Neoplasias , Fosfopiruvato Hidratasa/sangreRESUMEN
INTRODUCTION: During postherpetic neuralgia (PHN), the cerebral spinal fluid (CSF) possesses the capability to trigger glial activation and inflammation, yet the specific changes in its composition remain unclear. Recent findings from our research indicate elevations of central bone morphogenetic protein 4 (BMP4) during neuropathic pain (NP), serving as an independent modulator of glial cells. Herein, the aim of the present study is to test the CSF-BMP4 expressions and its role in the glial modulation in the process of PHN. METHODS: CSF samples were collected from both PHN patients and non-painful individuals (Control) to assess BMP4 and its antagonist Noggin levels. Besides, intrathecal administration of both CSF types was conducted in normal rats to evaluate the impact on pain behavior, glial activity, and inflammation.; Additionally, both Noggin and STAT3 antagonist-Stattic were employed to treat the PHN-CSF or exogenous BMP4 challenged cultured astrocytes to explore downstream signals. Finally, microglial depletion was performed prior to the PHN-CSF intervention so as to elucidate the microglia-astrocyte crosstalk. RESULTS: BMP4 levels were significantly higher in PHN-CSF compared to Control-CSF (P < 0.001), with a positive correlation with pain duration (P < 0.05, r = 0.502). Comparing with the Control-CSF producing moderate paw withdrawal threshold (PWT) decline and microglial activation, PHN-CSF further exacerbated allodynia and triggered both microglial and astrocytic activation (P < 0.05). Moreover, PHN-CSF rather than Control-CSF evoked microglial proliferation and pro-inflammatory transformation, reinforced iron storage, and activated astrocytes possibly through both SMAD159 and STAT3 signaling, which were all mitigated by the Noggin application (P < 0.05). Next, both Noggin and Stattic effectively attenuated BMP4-induced GFAP and IL-6 upregulation, as well as SMAD159 and STAT3 phosphorylation in the cultured astrocytes (P < 0.05). Finally, microglial depletion diminished PHN-CSF induced astrogliosis, inflammation and endogenous BMP4 expression (P < 0.05). CONCLUSION: Our study highlights the role of CSF-BMP4 elevation in glial activation and allodynia during PHN, suggesting a potential therapeutic avenue for future exploration.
Asunto(s)
Astrocitos , Proteína Morfogenética Ósea 4 , Hiperalgesia , Microglía , Neuralgia Posherpética , Animales , Microglía/metabolismo , Astrocitos/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Masculino , Ratas , Humanos , Anciano , Neuralgia Posherpética/líquido cefalorraquídeo , Neuralgia Posherpética/metabolismo , Femenino , Hiperalgesia/metabolismo , Persona de Mediana Edad , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Proteínas Portadoras/metabolismoRESUMEN
The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transactivadores , Animales , Humanos , Ratones , Doxorrubicina , Proteína p300 Asociada a E1A , Interleucina-3 , Subunidad alfa del Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transactivadores/metabolismoRESUMEN
Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.
RESUMEN
Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.
Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Elonguina , Ubiquitinación , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Elonguina/metabolismo , Elonguina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C , Células MCF-7 , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.