Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 102: 103361, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31911172

RESUMEN

Acute Kidney Injury (AKI) is a common clinical syndrome characterized by the rapid loss of kidney excretory function, which aggravates the clinical severity of other diseases in a large number of hospitalized patients. Accurate early prediction of AKI can enable in-time interventions and treatments. However, AKI is highly heterogeneous, thus identification of AKI sub-phenotypes can lead to an improved understanding of the disease pathophysiology and development of more targeted clinical interventions. This study used a memory network-based deep learning approach to discover AKI sub-phenotypes using structured and unstructured electronic health record (EHR) data of patients before AKI diagnosis. We leveraged a real world critical care EHR corpus including 37,486 ICU stays. Our approach identified three distinct sub-phenotypes: sub-phenotype I is with an average age of 63.03±17.25 years, and is characterized by mild loss of kidney excretory function (Serum Creatinine (SCr) 1.55±0.34 mg/dL, estimated Glomerular Filtration Rate Test (eGFR) 107.65±54.98 mL/min/1.73 m2). These patients are more likely to develop stage I AKI. Sub-phenotype II is with average age 66.81±10.43 years, and was characterized by severe loss of kidney excretory function (SCr 1.96±0.49 mg/dL, eGFR 82.19±55.92 mL/min/1.73 m2). These patients are more likely to develop stage III AKI. Sub-phenotype III is with average age 65.07±11.32 years, and was characterized moderate loss of kidney excretory function and thus more likely to develop stage II AKI (SCr 1.69±0.32 mg/dL, eGFR 93.97±56.53 mL/min/1.73 m2). Both SCr and eGFR are significantly different across the three sub-phenotypes with statistical testing plus postdoc analysis, and the conclusion still holds after age adjustment.


Asunto(s)
Lesión Renal Aguda , Registros Electrónicos de Salud , Lesión Renal Aguda/diagnóstico , Anciano , Creatinina , Tasa de Filtración Glomerular , Humanos , Persona de Mediana Edad , Fenotipo
2.
KDD ; 2019: 2487-2495, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33859865

RESUMEN

In recent years, large amounts of health data, such as patient Electronic Health Records (EHR), are becoming readily available. This provides an unprecedented opportunity for knowledge discovery and data mining algorithms to dig insights from them, which can, later on, be helpful to the improvement of the quality of care delivery. Predictive modeling of clinical risks, including in-hospital mortality, hospital readmission, chronic disease onset, condition exacerbation, etc., from patient EHR, is one of the health data analytic problems that attract lots of the interests. The reason is not only because the problem is important in clinical settings, but also is challenging when working with EHR such as sparsity, irregularity, temporality, etc. Different from applications in other domains such as computer vision and natural language processing, the data samples in medicine (patients) are relatively limited, which creates lots of troubles for building effective predictive models, especially for complicated ones such as deep learning. In this paper, we propose MetaPred, a meta-learning framework for clinical risk prediction from longitudinal patient EHR. In particular, in order to predict the target risk with limited data samples, we train a meta-learner from a set of related risk prediction tasks which learns how a good predictor is trained. The meta-learned can then be directly used in target risk prediction, and the limited available samples in the target domain can be used for further fine-tuning the model performance. The effectiveness of MetaPred is tested on a real patient EHR repository from Oregon Health & Science University. We are able to demonstrate that with Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) as base predictors, MetaPred can achieve much better performance for predicting target risk with low resources comparing with the predictor trained on the limited samples available for this risk alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA