Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400501, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923378

RESUMEN

Molecular engineering enables the creation of aptamers with novel functions, but the prerequisite is a deep understanding of their structure and recognition mechanism. The cellular-mesenchymal epithelial transition factor (c-MET) is garnering significant attention due to the critical role of the c-MET/HGF signaling pathway in tumor development and invasion. This study reports a strategy for constructing novel chimeric aptamers that bind to both c-MET and other specific proteins. c-MET was identified to be the molecular target of a DNA aptamer, HF3-58, selected through cell-SELEX. The binding structure and mechanism of HF3-58 with c-MET were systematically studied, revealing the scaffold, recognition, and redundancy regions. Through molecular engineering design, the redundancy region was replaced with other aptamers possessing stem-loop structures, yielding novel chimeric aptamers with bispecificity for binding to c-MET and specific proteins. A chimeric bispecific aptamer HF-3b showed the ability to mediate the adhesion of T-cells to tumor cells, suggesting the prospective utility in tumor immunotherapy. These findings suggest that aptamer HF3-58 can serve as a molecular engineering platform for the development of diverse multifunctional ligands targeting c-MET. Moreover, comprehensive understanding of the binding mechanisms of aptamers will provide guidance for the design of functional aptamers, significantly expanding their potential applications.

2.
Environ Sci Technol ; 58(31): 13890-13903, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39042037

RESUMEN

Metal ions are liable to form metal-dissolved organic matter [dissolved organic matter (DOM)] complexes, changing the chemistry and chlorine reactivity of DOM. Herein, the impacts of iron and zinc ions (Fe3+ and Zn2+) on the formation of unknown chlorinated disinfection byproducts (Cl-DBPs) were investigated in a chlorination system. Fe3+ preferentially complexed with hydroxyl and carboxyl functional groups, while Zn2+ favored the amine functional groups in DOM. As a consequence, electron-rich reaction centers were created by the C-O-metal bonding bridge, which facilitated the electrophilic attack of α-C in metal-DOM complexes. Size-reactivity continuum networks were constructed in the chlorination system, revealing that highly aromatic small molecules were generated during the oxidation and decarbonization of metal-DOM complexes. Molecular transformation related to C-R (R represents complex sites) loss was promoted via metal complexation, including decarboxylation and deamination. Consequently, complexation with Fe3+ and Zn2+ promoted hydroxylation by the C-O-metal bonding bridge, thereby increasing the abundances of unknown polychlorinated Cl-DBPs by 9.6 and 14.2%, respectively. The study provides new insights into the regulation of DOM chemistry and chlorine reactivity by metal ions in chlorination systems, emphasizing that metals increase the potential health risks of drinking water and more scientific control standards for metals are needed.


Asunto(s)
Desinfección , Halogenación , Metales/química , Iones , Purificación del Agua , Cloro/química
3.
Anal Chem ; 95(50): 18595-18602, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38048047

RESUMEN

Cellular prion protein (PrPC) is highly expressed in a variety of tumor cells and plays a crucial role in neurodegenerative diseases. Its N-terminal domain contains a conserved octapeptide (PHGGGWGQ) repeat sequence. The number of repeats has been correlated with the species as well as the development of associated diseases. Herein, PrPC was identified to be the molecular target of a high-affinity DNA aptamer HA5-68 obtained by cell-SELEX. Aptamer HA5-68 was further optimized to two short sequences (HA5-40-1 and HA5-40-2), and its binding site to PrPC was identified to be located in the loop-stem-loop region of the head of its secondary structure. HA5 series aptamers were demonstrated to bind the octapeptide repeat region of PrPC, as well as the synthesized peptides containing different numbers of octapeptide repeats. The PrPC expression on 42 cell lines was measured by using aptamer HA5-68 as a molecular probe. The clear understanding of the molecular structure and binding mechanism of this set of aptamers will provide information for the design of diagnostic methods and therapeutic drugs targeting PrPC.


Asunto(s)
Aptámeros de Nucleótidos , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas , Aptámeros de Nucleótidos/química , Unión Proteica , Priones/genética , Sitios de Unión , Enfermedades por Prión/metabolismo
4.
Environ Sci Technol ; 57(47): 18775-18787, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505917

RESUMEN

Pharmaceuticals have been considered a priority group of emerging micropollutants in source waters in recent years, while their role in the formation and toxicity of disinfection byproducts (DBPs) during chlorine disinfection remains largely unclear. In this study, the contributions of natural organic matter (NOM) and pharmaceuticals (a mixture of ten representative pharmaceuticals) to the overall DBP formation and toxicity during drinking water chlorination were investigated. By innovatively "normalizing" chlorine exposure and constructing a kinetic model, we were able to differentiate and evaluate the contributions of NOM and pharmaceuticals to the total organic halogen (TOX) formation for source waters that contained different levels of pharmaceuticals. It was found that at a chlorine contact time of 1.0 h, NOM (2 mg/L as C) and pharmaceuticals (total 0.0062-0.31 mg/L as C) contributed 79.8-99.5% and 0.5-20.2%, respectively, of TOX. The toxicity test results showed that the chlorination remarkably increased the toxicity of the pharmaceutical mixture by converting the parent compounds into more toxic pharmaceutical-derived DBPs, and these DBPs might contribute significantly to the overall developmental toxicity of chlorinated waters. This study highlights the non-negligible role of pharmaceuticals in the formation and toxicity of overall DBPs in chlorinated drinking water.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Halogenación , Desinfectantes/toxicidad , Cloro , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Desinfección , Preparaciones Farmacéuticas
5.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239955

RESUMEN

The L1 cell adhesion molecule (L1CAM) plays important roles in the development and plasticity of the nervous system as well as in tumor formation, progression, and metastasis. New ligands are necessary tools for biomedical research and the detection of L1CAM. Here, DNA aptamer yly12 against L1CAM was optimized to have much stronger binding affinity (10-24 fold) at room temperature and 37 °C via sequence mutation and extension. This interaction study revealed that the optimized aptamers (yly20 and yly21) adopted a hairpin structure containing two loops and two stems. The key nucleotides for aptamer binding mainly located in loop I and its adjacent area. Stem I mainly played the role of stabilizing the binding structure. The yly-series aptamers were demonstrated to bind the Ig6 domain of L1CAM. This study reveals a detailed molecular mechanism for the interaction between yly-series aptamers and L1CAM and provides guidance for drug development and detection probe design against L1CAM.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Aptámeros de Nucleótidos/química , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neoplasias/metabolismo
6.
Environ Sci Technol ; 56(23): 16929-16939, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36409822

RESUMEN

Acetaminophen is widely used to treat mild to moderate pain and to reduce fever. Under the worldwide COVID-19 pandemic, this over-the-counter pain reliever and fever reducer has been drastically consumed, which makes it even more abundant than ever in municipal wastewater and drinking water sources. Chlorine is the most widely used oxidant in drinking water disinfection, and chlorination generally causes the degradation of organic compounds, including acetaminophen. In this study, a new reaction pathway in the chlorination of acetaminophen, i.e., oxidative coupling reactions via acetaminophen radicals, was investigated both experimentally and computationally. Using an ultraperformance liquid chromatograph coupled to an electrospray ionization-triple quadrupole mass spectrometer, we detected over 20 polymeric products in chlorinated acetaminophen samples, some of which have structures similar to the legacy pollutants "polychlorinated biphenyls". Both C-C and C-O bonding products were found, and the corresponding bonding processes and kinetics were revealed by quantum chemical calculations. Based on the product confirmation and intrinsic reaction coordinate computations, a pathway for the formation of the polymeric products in the chlorination of acetaminophen was proposed. This study suggests that chlorination may cause not only degradation but also upgradation of a phenolic compound or contaminant.


Asunto(s)
COVID-19 , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfección , Cloro , Agua Potable/química , Acetaminofén , Peso Molecular , Pandemias , Contaminantes Químicos del Agua/química , Halogenación , Dolor , Desinfectantes/química
7.
Environ Sci Technol ; 56(1): 13-29, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932308

RESUMEN

Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Preparaciones Farmacéuticas , Plásticos , Agua , Contaminantes Químicos del Agua/toxicidad
8.
J Environ Sci (China) ; 117: 326-335, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725086

RESUMEN

Chlorine disinfection of saline wastewater effluents rich in bromide and iodide forms relatively toxic brominated and iodinated disinfection byproducts (DBPs). Ultrasonication is a relatively new water treatment technology, and it is less sensitive to suspended solids in wastewaters. In this study, we examined the effects of ultrasonication (in terms of reactor type and combination mode with chlorination) on the DBP formation and toxicity in chlorinated primary and secondary saline wastewater effluents. Compared with the chlorinated wastewater effluent samples without ultrasonication, ultrasonic horn pretreatment of the wastewater effluent samples reduced the total organic halogen (TOX) levels in chlorination by ∼30%, but ultrasonic bath pretreatment of the wastewater samples did not significantly change the TOX levels in chlorination, which might be attributed to the higher energy utilization and decomposition extent of organic DBP precursors in the ultrasonic horn reactor. Moreover, the TOX levels in the chlorinated samples with ultrasonic horn pretreatment (USH-chlorination), simultaneous treatment (chlorination+USH) and subsequent treatment (chlorination-USH) were also significantly reduced, with the maximum TOX reductions occurring in the samples with ultrasonic horn pretreatment. A toxicity index was calculated by weighting and summing the levels of total organic chlorine, total organic bromine and total organic iodine in each treated sample. The calculated toxicity index values of the chlorinated wastewater effluent samples followed a descending rank order of "chlorination" > "chlorination+USH" > "chlorination-USH" > "USH-chlorination", with the lowest toxicity occurring in the samples with ultrasonic horn pretreatment. Then, a developmental toxicity bioassay was conducted for each treated sample. The measured toxicity index values of the chlorinated wastewater samples followed the same descending rank order.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Halógenos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Environ Sci Technol ; 55(9): 5906-5916, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830743

RESUMEN

Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfectantes/análisis , Desinfectantes/toxicidad , Desinfección , Halogenación , Halógenos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Technol ; 54(3): 1646-1656, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31909989

RESUMEN

Halogenated disinfection byproducts (DBPs) are generated via reactions with natural organic matter (NOM) in chlorine disinfection of drinking water. How large NOM molecules are converted to halogenated aliphatic DBPs during chlorination remains a fascinating yet largely unresolved issue. Recently, many relatively toxic halogenated aromatic DBPs have been identified in chlorinated drinking waters, and they behave as intermediate DBPs to decompose to halogenated aliphatic DBPs. There is still one gap between NOM and halogenated aromatic DBPs. In this study, nine nonhalogenated aromatic compounds were identified as new intermediate DBPs in chlorination, including 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 3-formyl-4-hydroxybenzoic acid, salicylic acid, 5-formyl-2-hydroxybenzoic acid, 4-hydroxyphthalic acid, 4'-hydroxyacetophenone, 4-methylbenzoic acid, and 4-hydroxy-3-methylbenzaldehyde. These nonhalogenated aromatic DBPs formed quickly and reached the maximum levels at relatively low chlorine doses within a short contact time, and their formation pathways were proposed. The formation kinetics of three nonhalogenated aromatic DBPs and their corresponding monochloro-/dichloro-substitutes during chlorination were then modeled. The nonhalogenated aromatic DBPs contributed up to 84% of the formed monochloro-substitutes and 22% of the formed dichloro-substitutes, demonstrating that they somewhat acted as intermediates between NOM and halogenated aromatic DBPs. Furthermore, the formed nonhalogenated aromatic DBPs were found to be removed by >50% by granular activated carbon adsorption.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación
11.
Environ Sci Technol ; 52(18): 10552-10561, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30125089

RESUMEN

The unintended formation of disinfection byproducts (DBPs) may compromise the safety of drinking water. Since no specified DBPs have been found to be responsible for the overall adverse effects and over half of total organic halogen (TOX) remains unidentified, DBP mixture toxicity is gaining increasing interest as a potential indicator of how risky drinking water might be. In this study, a new approach to evaluating the toxicity of drinking water DBP mixtures was developed by combining freeze-drying or rotoevaporation pretreatment with an in vivo high-salinity-tolerance bioassay with the embryos of a marine polychaete Platynereis dumerilii. The DBP recoveries by freeze-drying or rotoevaporation were compared with those by commonly applied liquid-liquid-extraction (LLE). For drinking water subjected to typical disinfection processes (i.e., chlorination, chloramination, chlorine dioxide treatment, and ozonation with or without postchlorination), LLE led to the lowest TOX recovery (11-18%) and the loss of all inorganic DBPs, while freeze-drying and rotoevaporation recovered 28-58% and 35-61% of TOX, respectively, and effectively recovered 81-99% and 85-104% of inorganic DBPs, respectively. Thus, LLE caused an underestimation of the toxicity of DBP mixtures compared with freeze-drying and rotoevaporation. Besides, the comparative toxicity varied significantly for water samples pretreated with different methods due to the effect of inorganic DBPs and a synergistic effect of organic and inorganic DBPs. The new approach revealed that the bromide-rich source water disinfected with ozone caused the highest developmental toxicity, followed by those disinfected with chlorine, chlorine dioxide, and chloramine in that order.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Bioensayo , Cloro , Desinfección , Halogenación
12.
Environ Sci Technol ; 51(1): 58-67, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27958704

RESUMEN

Chlorine disinfection of wastewater effluents rich in bromide and iodide ions results in the formation of relatively toxic bromo- and iodo-disinfection byproducts (DBPs), especially highly toxic bromophenolic and iodophenolic DBPs, which could harm the marine ecosystem when they are discharged into receiving seawater along with the wastewater effluents. In this study, we investigated the conversion of three individual halophenolic DBPs (5-bromosalicylic acid, 2,5-dibromohydroquinone, and 2,4,6-triiodophenol) and two chlorinated saline wastewater DBP mixtures in seawater. The conversion products were analyzed with ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, and the conversion of overall halo-DBPs in the wastewater DBP mixtures was monitored by measuring total organic halogen. The photoconversion-induced variations in the toxicity were evaluated using the embryos of a marine polychaete. Halophenolic DBPs were found to undergo photoconversion in seawater. The conversion was triggered by photonucleophilic substitution: bromophenolic and iodophenolic DBPs were converted to their chlorophenolic or hydroxyphenolic analogues, via substituting the bromine and iodine atoms with chloride or hydroxide ions in seawater; chlorophenolic DBPs were converted to their hydroxyphenolic analogues, via substituting the chlorine atoms with hydroxide ions in seawater. The hydroxyphenolic analogues thus formed further decomposed and finally cleaved to aliphatic compounds. The photoconversion of chlorinated saline wastewater DBPs in receiving seawater was overall a dehalogenation and detoxification process.


Asunto(s)
Aguas Residuales/química , Contaminantes Químicos del Agua , Desinfectantes/química , Desinfección , Halogenación , Agua de Mar/química
13.
Environ Sci Technol ; 51(6): 3435-3444, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28199792

RESUMEN

During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.


Asunto(s)
Desinfección , Agua Potable , Adsorción , Carbón Orgánico , Contaminantes Químicos del Agua , Purificación del Agua
14.
Environ Sci Technol ; 51(18): 10562-10571, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28806073

RESUMEN

Aromatic iodinated disinfection byproducts (DBPs) are a newly identified category of highly toxic DBPs. Among the identified aromatic iodinated DBPs, 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol have shown relatively widespread occurrence and high toxicity. In this study, we found that 4-iodophenol underwent transformation to form 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol in the presence of monochloramine. The transformation pathways were investigated, the decomposition kinetics of 4-iodophenol and the formation of 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol were studied, the factors affecting the transformation were examined, the toxicity change during the transformation was evaluated, and the occurrence of the proposed transformation pathways during chloramination of source water was verified. The results revealed that 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol, which could account for 71.0% of iodine in the transformed 4-iodophenol, were important iodinated transformation products of 4-iodophenol in the presence of monochloramine. The transformation pathways of 4-iodophenol in the presence of monochloramine were proposed and verified. The decomposition of 4-iodophenol in the presence of monochloramine followed a pseudo-second-order decay. Various factors including monochloramine dose, pH, temperature, nitrite concentration, and free chlorine contact time (before chloramination) affected the transformation. The cytotoxicity of the chloraminated 4-iodophenol samples increased continuously with contact time. The proposed transformation pathways occurred during chloramination of source water.


Asunto(s)
Cloraminas/química , Desinfección , Fenoles/química , Contaminantes Químicos del Agua/análisis , Halogenación , Purificación del Agua
15.
J Environ Sci (China) ; 58: 83-92, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774629

RESUMEN

Chlorine dioxide (ClO2) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO2-treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO2-treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water.


Asunto(s)
Compuestos de Cloro/análisis , Desinfectantes/análisis , Agua Potable/análisis , Óxidos/análisis , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Desinfección/métodos , Agua Potable/química , Halogenación , Extracción Líquido-Líquido , Espectrometría de Masa por Ionización de Electrospray
16.
Environ Res ; 149: 206-215, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27214136

RESUMEN

BACKGROUND: Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. OBJECTIVE: We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. METHODS: A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. RESULTS: Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. CONCLUSION: Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies.


Asunto(s)
Desinfectantes/metabolismo , Ácido Tricloroacético/orina , Trihalometanos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adulto , Biomarcadores/metabolismo , Biomarcadores/orina , Desinfectantes/orina , Desinfección , Femenino , Humanos , Masculino , España , Natación , Piscinas , Contaminantes Químicos del Agua/orina , Adulto Joven
17.
Environ Sci Technol ; 49(24): 14475-83, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26505276

RESUMEN

Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Desinfectantes/toxicidad , Ecotoxicología/métodos , Aguas Residuales/toxicidad , Animales , Chlorophyta/efectos de los fármacos , Desinfectantes/química , Desinfección/métodos , Agua Dulce/química , Halogenación , Yodo/química , Poliquetos/efectos de los fármacos , Agua de Mar/química , Pruebas de Toxicidad/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
18.
Environ Sci Technol ; 48(20): 11846-52, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25236171

RESUMEN

Utilizing seawater for toilet flushing is an effective way to conserve freshwater in coastal cities. During chlorination for disinfecting saline wastewater effluents, the high levels of bromide from seawater are oxidized to hypobromous acid which may then react with effluent organics to form brominated disinfection byproducts (DBPs). In this research, by applying a new precursor ion scan method, we detected and identified a group of halopyrroles in a chlorinated saline wastewater effluent, including tetrabromopyrrole, tribromochloropyrrole, tribromoiodopyrrole, and tribromopyrrole, with tetrabromopyrrole as the predominant species. It is the first time that this group of halopyrroles were identified as wastewater DBPs (though 2,3,5-tribromopyrrole has been found to be a DBP in drinking water before). Detection of halopyrroles was problematic as these compounds in the pretreated samples were found to convert to halonitropyrroles; the problem was successfully solved by diluting the pretreated samples. The formation, occurrence, precursor, and toxicity of tetrabromopyrrole were investigated. This DBP showed significantly higher developmental toxicity than any of the haloaliphatic and haloaromatic DBPs previously tested.


Asunto(s)
Desinfectantes/toxicidad , Desinfección , Halogenación , Salinidad , Aguas Residuales/química , Animales , Anélidos/efectos de los fármacos , Anélidos/embriología , Cromatografía Líquida de Alta Presión , Embrión no Mamífero/efectos de los fármacos , Pirroles/toxicidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Technol ; 48(9): 4877-84, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24734772

RESUMEN

An electrospray ionization-tandem mass spectrometry (ESI-tqMS) method was developed to identify the location of chlorine substitution during the chlorination of model organic compounds. The chlorine substitution in the aliphatic part and that in the benzene ring of an organic molecule can be differentiated by their corresponding ranges of optimum collision energies, 5-7 eV and over 15 eV, respectively, in the precursor ion scan of m/z 35. The method was applied to predict the structures of intermediates and reveal the transformation pathways during the chlorination of 4-amino-2-chlorobenzoic acid and phenylalanine as a function of reaction time and the chlorine-to-precursor ratio. In the case of phenylalanine, chlorine was found to replace one hydrogen atom attached to the aliphatic nitrogen; in the case of 4-amino-2-chlorobenzoic acid, chlorine was found to replace the hydrogen atoms attached to the aromatic rings.


Asunto(s)
Cloro/análisis , Desinfectantes/química , Halogenación , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Cinética , Fenilalanina/química , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/química
20.
Environ Sci Technol ; 48(1): 149-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24308807

RESUMEN

Tap water typically contains numerous halogenated disinfection byproducts (DBPs) as a result of disinfection, especially of chlorination. Among halogenated DBPs, brominated ones are generally significantly more toxic than their chlorinated analogues. In this study, with the aid of ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 79/81, whole spectra of polar brominated DBPs in simulated tap water samples without and with boiling were revealed. Most polar brominated DBPs were thermally unstable and their levels were substantially reduced after boiling via decarboxylation or hydrolysis; the levels of a few aromatic brominated DBPs increased after boiling through decarboxylation of their precursors. A novel adsorption unit for volatile total organic halogen was designed, which enabled the evaluation of halogen speciation and mass balances in the simulated tap water samples during boiling. After boiling for 5 min, the overall level of brominated DBPs was reduced by 62.8%, of which 39.8% was volatilized and 23.0% was converted to bromide; the overall level of chlorinated DBPs was reduced by 61.1%, of which 44.4% was volatilized and 16.7% was converted to chloride; the overall level of halogenated DBPs was reduced by 62.3%. The simulated tap water sample without boiling was cytotoxic in a chronic (72 h) exposure to mammalian cells; this cytotoxicity was reduced by 76.9% after boiling for 5 min. The reduction in cytotoxicity corresponded with the reduction in overall halogenated DBPs. Thus, boiling of tap water can be regarded as a "detoxification" process and may reduce human exposure to halogenated DBPs through tap water ingestion.


Asunto(s)
Desinfección/métodos , Agua Potable/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Animales , Bromuros/análisis , Células CHO/efectos de los fármacos , Cricetulus , Halogenación , Halógenos/análisis , Halógenos/química , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Pruebas de Toxicidad Crónica , Temperatura de Transición , Volatilización , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Abastecimiento de Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA