Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139250

RESUMEN

The occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected. This further leads to the escape of tumor cells from immune surveillance and therefore to abnormal proliferation. This review summarizes the regulatory functions associated with the abnormal biosynthesis and activity of metabolic signaling molecules during the process of tumor metabolic reprogramming. In addition, we provide a comprehensive description of the competition between immune cells and tumor cells for nutrients in the TME, as well as the metabolites required for tumor metabolism, the metabolic signaling pathways involved, and the functionality of the immune cells. Finally, we summarize current research targeted at the development of tumor immunotherapy. We aim to provide new concepts for future investigations of the mechanisms underlying the metabolic reprogramming of tumors and explore the association of these mechanisms with tumor immunity.


Asunto(s)
Reprogramación Metabólica , Neoplasias , Humanos , Transducción de Señal , Vigilancia Inmunológica , Inmunoterapia , Microambiente Tumoral
2.
Cureus ; 16(3): e56335, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633952

RESUMEN

Background This study aimed to investigate the effectiveness of ultrasonography (US) and in vitro measurement (IVM) methods in localizing peripherally inserted central catheters (PICCs) in premature infants and analyze the relevant factors affecting the accuracy of IVM. Methodology The study employs a prospective before-and-after self-controlled clinical trial design. A total of 210 premature infants who underwent PICC catheterization were compared. We assessed the rate of catheter tip placement, consistency, and stability and analyzed the relevant factors. Results The study enrolled a total of 202 premature infants after eight infants dropped out. The one-time positioning rates of the PICC catheter tip using US and IVM were 100% and 73.8%, respectively. Concerning IVM, 53 (26.2%) patients did not reach the optimal position, with 24 (11.8%) patients having a shallow position and 29 (14.3%) having a deep position. The consistency of the two methods was 0.782 (p < 0.05). The degree of dispersion of US was 0.2 (0.0-0.4) cm, which was significantly smaller than IVM at 1.5 (0.0-1.8) cm. Gestational age less than 32 weeks (odds ratio (OR) = 6.64, 95% confidence interval (CI) = 1.43-30.81), weight less than 1,500 g (OR = 5.85, 95% CI = 2.11-16.20), body length less than 40 cm (OR = 15.36, 95% CI = 4.47-52.72), mechanical ventilation (OR = 5.13, 95% CI = 1.77-14.83), abdominal distension (OR = 78.18, 95% CI = 10.62-575.22), and bloating (OR = 8.81, 95% CI = 1.42-47.00) were risk factors that affected the accuracy of IVM. Conclusions Gestational age, weight, length, mechanical ventilation, abdominal distension, and swelling can lead to deviations with IVM. US can directly view the tip of the catheter, which is more accurate. Additionally, it is recommended to reduce the length of the catheter by 1.3 cm when using IVM to achieve the best-estimated placement length.

3.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672455

RESUMEN

In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.


Asunto(s)
Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Animales , Transición Epitelial-Mesenquimal
4.
J Hazard Mater ; 474: 134669, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805815

RESUMEN

Nowadays, effluent treatment is a severe challenge mainly because of its complex composition, which includes oil, heavy metal ions, and dyes. Developing new intelligent membranes is one of the strategies to tackle these significant challenges in wastewater treatment. In this study, we fabricated asymmetric polyethylene glycol terephthalate (PET) membranes by grafting cross-linked poly (itaconic anhydride) (CL-PITA) nanoparticles onto the irradiated face. These nanoparticles were then functionalized with polyethyleneimine (PEI) and protonated with HCl to introduce numerous active electropositive amine groups. The fundamental purpose was to increase surface roughness, introduce numerous hydrophilic groups, and modify it to create a multi-functional PET membrane to separate complex environments. The promising results demonstrated that the protonated PET-g-ITA/DVB(10)-cat membrane exhibited excellent separation efficiencies (SE) for water/light oil, water/heavy oil and oil-in-water (O/W) emulsion. Compared to PET-g-ITA/DVB(0)-cat, it showed superior performance in SE for O/W emulsion and flux decay for water/light oil after 10 cycles. More interestingly, owing to numerous positively charged active amino groups and negativley charged carboxylate groups, the intelligent membrane exhibited a high removal rate of ca. 90 % for anionic dye (congo red) and heavy metals (Cu2+ and Co2+), showing great potential in complex water treatment environments.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124550, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823240

RESUMEN

Near-infrared organic fluorescent probes have great need in biological sciences and medicine but most of them are still largely unable to meet demand. In this work, a delicate multipurpose organic fluorescent probe (DPPM-TPA) with aggregation-induced emission performances is designed and prepared by facile method to reflect fluorescence labeling, two-photon imaging, and long-term fluorescent tracking. Specifically, DPPM-TPA NPs was constructed from 4-(diphenylamino)phenylboronic acid and DPPM-Br by classical Suzuki coupling reaction and then coated with F127. Such nanoprobe possessed high stability in diverse medium under ambient temperatures, low cytotoxicity, and brilliant fluorescence performance. More importantly, DPPM-TPA NPs showed excellent two-photon imaging and extraordinary long-term fluorescence tracing capacity to malignant tumor, and it can last up to 9 days. These results indicated that DPPM-TPA NPs is expected to serve as a fluorescent probe for photodiagnostic and providing a new idea for the development of long-term fluorescent tracker.


Asunto(s)
Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Animales , Neoplasias , Ratones , Espectrometría de Fluorescencia , Nanopartículas/química , Línea Celular Tumoral , Ácidos Borónicos/química
6.
Animals (Basel) ; 13(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38136838

RESUMEN

To investigate the shifts in the biochemical composition of hybrid grouper during the early larval stages, we collected samples at various developmental milestones, spanning from newly hatched larvae (stage I) to 4 days after hatching (stage V). Our findings revealed several notable trends: (1) The total length of hybrid grouper larvae exhibited a significant increase as the yolk-sac absorption progressed from stage I to V. Concurrently, there was a marked decrease in yolk volume and oil volume during the transition from stage I to III, followed by a gradual decline from stage III to V. (2) Dry weight and total lipid content displayed a rapid reduction throughout the larval development period, while the total protein content exhibited a declining trend. (3) The concentrations of triacylglycerols and wax esters/steryl esters decreased considerably, particularly at stage V. However, no differences were observed among the contents of ketones, hydrocarbons, and sterols. (4) As yolk-sac larvae developed from stage I to V, a significant reduction was observed in the levels of essential amino acids (EAAs), such as leucine, valine, isoleucine, phenylalanine, glycine, alanine, serine, proline, and tyrosine. This trend was also observed for non-EAAs and total amino acids, with fluctuations in the content of other amino acids. (5) There was a significant decrease in the levels of specific fatty acids, including C16:0, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), C18:0, 18:1n-9, and C20:4n-6. In contrast, the contents of C22:6n-3, polyunsaturated fatty acids (PUFAs), n-3 PUFA, n-6 PUFA, and the combination of docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA), as well as the DHA/EPA ratio, remained stable from stage I to III but declined thereafter. (6) During the early developmental stages, the utilization sequence of fatty acids followed a pattern of prioritizing SFAs, followed by MUFAs, n-6 PUFA, and n-3 PUFA. These findings provide further insights into the nutritional priorities of hybrid grouper larvae during their early development, with a particular emphasis on lipids and fatty acids as vital energy sources. Additionally, our results highlight variations in the efficiency of utilization among different types of fatty acids, while protein utilization remained relatively stable, characterized by the selective consumption of amino acid content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA