Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39359231

RESUMEN

In situ visualization of microRNA (miRNA) in cancer cells and diseased tissues is essential for advancing our comprehension of the onset and progression of associated diseases. Two-photon (TP) imaging, as an imaging technology with high spatiotemporal resolution, deep tissue penetration, and accurate target quantification, has distinctive advantages over single-photon imaging and has attracted increasing attention. Extensive research has been conducted on two-photon dye-doped silica nanoparticles, which exhibit a large two-photon absorption (TPA) cross-section, high fluorescence quantum yield, and excellent biocompatibility. However, the low abundance of RNA in tumor cells leads to insufficient signal output. Based on functional nucleic acid, a catalyzed hairpin self-assembly (CHA) signal amplification strategy, which has simplicity, robustness, and nonenzymatic characteristics, can achieve the amplification of DNA or RNA signals. Here, a two-photon silica nanoamplifier (TP-SNA) utilizing TP dye-doped silica nanoparticles (SiNPs) and functional nucleic acid was constructed, employing triggering catalyzed hairpin self-assembly and fluorescence resonance energy transfer (FRET) for highly sensitive detection and precise TP imaging of endogenous miRNAs in tumor cells and tissues at varying depths. The TP-SNA demonstrated the capability to detect miR-203 with a detection limit of 33 pM. The maximum two-photon tissue penetration depth of the two-photon nanoamplifier was 210 µm. The two-photon nanoamplifier developed in this study makes full use of the advantages of accurate TP ratiometric bioimaging and the CHA signal amplification strategy, which shows good application value for future transformation into clinical diagnosis.

2.
Environ Sci Process Impacts ; 22(4): 1026-1036, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32118215

RESUMEN

The reactions of hexabromocyclododecane (HBCD) isomers with Fe(ii) associated with iron oxides were performed in a pH range from 6.15 to 7.50 at room temperature. It was observed that Fe(ii) associated with iron oxides (i.e., goethite, magnetite, hematite) is a better reductant than just an aqueous solution of Fe(ii) to potentially reduce HBCD in subsurface environments. The reaction of HBCD with Fe(ii) associated with iron oxides is also stereoisomer specific with α-HBCD reacting much slower than ß-HBCD and γ-HBCD. The reaction is pH dependent and it is faster with increased pH. The initial concentration of Fe(ii) and HBCD can also affect the reaction rate. The reaction is negligible when all the Fe(ii) is sorbed to magnetite and no Fe(ii) remains dissolved. It was also observed that the reaction of 100 nM HBCD is slower than the reaction of 1.0 µM HBCD with Fe(ii) associated with magnetite. In addition, natural organic matter (NOM) was found to inhibit the degradation of HBCD by Fe(ii) associated with iron oxides.


Asunto(s)
Compuestos Férricos , Hidrocarburos Bromados , Hierro , Hidrocarburos Bromados/química , Oxidación-Reducción , Óxidos , Estereoisomerismo
3.
Chemosphere ; 226: 238-245, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30928716

RESUMEN

The individual degradation rates of the three dominant stereoisomers (α, ß, γ) of hexabromocyclododecane (HBCDD) with bisulfide and polysulfides were investigated at pH 9 in methanol/water solutions at two different temperatures (25 °C and 40 °C). Under all conditions investigated, α-HBCDD reacts 10 to 20 times slower with bisulfide than ß-HBCDD and γ-HBCDD. The difference in reactivity of HBCDD isomers can be explained by the different populations of stable conformers with large dihedral angle between the vicinal bromine atoms. It was also observed that the reaction of HBCDD with polysulfides is about six times faster than with bisulfide. The experiments performed in solvent mixtures with increased water content at 40 °C indicated that the reaction of HBCDD with bisulfide is faster with higher percentage of water. The much slower abiotic reaction of α-HBCDD compared to ß-HBCDD and γ-HBCDD could potentially contribute to the fact that α-HBCDD is more persistent in the environment than γ-HBCDD. Only one isomer of tetrabromocyclododecene (TBCDe-5) was identified as a degradation product of the reaction of HBCDD with reduced sulfur species. TBCDe-5 itself reacts about ten times slower with bisulfide and twenty times slower with polysulfide than HBCDD. The study demonstrates that polysulfides and bisulfides can reduce HBCDD sufficiently in natural anoxic environments and the dominant pathway for the degradation of HBCDD by reduced sulfur species is very likely to be the reductive debromination of vicinal dibromides via concerted anti-elimination.


Asunto(s)
Hidrocarburos Bromados/química , Estereoisomerismo , Azufre/química , Metanol/química , Sustancias Reductoras , Sulfuros/química , Agua/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA