Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(3): 492-506.e14, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753426

RESUMEN

Interferon-α (IFNα) signaling is essential for antiviral response via induction of IFN-stimulated genes (ISGs). Through a non-biased high-throughput RNAi screening of 711 known epigenetic modifiers in cellular models of IFNα-mediated inhibition of HBV replication, we identified methyltransferase SETD2 as a critical amplifier of IFNα-mediated antiviral immunity. Conditional knockout mice with hepatocyte-specific deletion of Setd2 exhibit enhanced HBV infection. Mechanistically, SETD2 directly mediates STAT1 methylation on lysine 525 via its methyltransferase activity, which reinforces IFN-activated STAT1 phosphorylation and antiviral cellular response. In addition, SETD2 selectively catalyzes the tri-methylation of H3K36 on promoters of some ISGs such as ISG15, leading to gene activation. Our study identifies STAT1 methylation on K525 catalyzed by the methyltransferase SETD2 as an essential signaling event for IFNα-dependent antiviral immunity and indicates potential of SETD2 in controlling viral infections.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/inmunología , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferón-alfa/inmunología , Factor de Transcripción STAT1/genética , Animales , Línea Celular , Línea Celular Tumoral , Epigénesis Genética , Hepatitis B Crónica/virología , Hepatocitos/metabolismo , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Dominios Proteicos , Interferencia de ARN , Transcripción Genética , Replicación Viral
2.
Immunity ; 50(3): 600-615.e15, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824325

RESUMEN

CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptores CCR7/genética , Factores de Transcripción/genética , Inmunidad Adaptativa/genética , Animales , Línea Celular , Células Dendríticas/patología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Ganglios Linfáticos/patología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/genética , Regulación hacia Arriba/genética
3.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38632084

RESUMEN

MOTIVATION: It is difficult to generate new molecules with desirable bioactivity through ligand-based de novo drug design, and receptor-based de novo drug design is constrained by disease target information availability. The combination of artificial intelligence and phenotype-based de novo drug design can generate new bioactive molecules, independent from disease target information. Gene expression profiles can be used to characterize biological phenotypes. The Transformer model can be utilized to capture the associations between gene expression profiles and molecular structures due to its remarkable ability in processing contextual information. RESULTS: We propose TransGEM (Transformer-based model from gene expression to molecules), which is a phenotype-based de novo drug design model. A specialized gene expression encoder is used to embed gene expression difference values between diseased cell lines and their corresponding normal tissue cells into TransGEM model. The results demonstrate that the TransGEM model can generate molecules with desirable evaluation metrics and property distributions. Case studies illustrate that TransGEM model can generate structurally novel molecules with good binding affinity to disease target proteins. The majority of genes with high attention scores obtained from TransGEM model are associated with the onset of the disease, indicating the potential of these genes as disease targets. Therefore, this study provides a new paradigm for de novo drug design, and it will promote phenotype-based drug discovery. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/hzauzqy/TransGEM.


Asunto(s)
Diseño de Fármacos , Humanos , Fenotipo , Perfilación de la Expresión Génica/métodos , Inteligencia Artificial , Algoritmos , Expresión Génica , Ligandos
4.
Chem Soc Rev ; 53(3): 1090-1166, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38193263

RESUMEN

Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.

5.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856118

RESUMEN

Copper-based catalysts have been attracting increasing attention for CO2 electroreduction into value-added multicarbon chemicals. However, most Cu-based catalysts are designed for ethylene production, while ethanol production with high Faradaic efficiency at high current density still remains a great challenge. Herein, Cu clusters supported on single-atom Cu dispersed nitrogen-doped carbon (Cux/Cu-N/C) show ethanol Faradaic efficiency of ∼40% and partial current density of ∼350 mA cm-2. Quasi in situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy results suggest the generation of surface asymmetrical sites of Cu+ and Cu0 as well as Cu clusters by electrochemical reduction and reconstruction during the CO2 electroreduction process. Density functional theory calculations indicate that the interaction between Cu clusters and the Cu-N/C support enhances *CO adsorption, facilitates the C-C coupling step, and favors the hydrogenation rather than dehydroxylation of the critical intermediate *CHCOH toward ethanol in the bifurcation.

6.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574275

RESUMEN

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

7.
Nano Lett ; 24(7): 2299-2307, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334593

RESUMEN

Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 µm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.

8.
J Cell Mol Med ; 28(3): e18111, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38235996

RESUMEN

Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-ß2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.


Asunto(s)
Humor Acuoso , Catarata , Humanos , Enfermedad Aguda , Humor Acuoso/metabolismo , Catarata/metabolismo , Ensayo de Inmunoadsorción Enzimática , Inflamación/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Proteínas Matrilinas/metabolismo
9.
J Biol Chem ; 299(8): 104990, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392850

RESUMEN

Cycloartenyl ferulate (CF) is abundant in brown rice with multiple biologic functions. It has been reported to possess antitumor activity; however, the related mechanism of action of CF has not been clarified. Herein, we unexpectedly uncover the immunological regulation effects of CF and its molecular mechanism. We discovered that CF directly enhanced the killing capacity of natural killer (NK) cells for various cancer cells in vitro. In vivo, CF also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma dependent on NK cells. In addition, CF promoted anticancer efficacy of the anti-PD1 antibody with improvement of tumor immune microenvironment. Mechanistically, we first unveiled that CF acted on the canonical JAK1/2-STAT1 signaling pathway to enhance the immunity of the NK cells by selectively binding to interferon γ receptor 1. Collectively, our results indicate that CF is a promising immunoregulation agent worthy of attention in clinical application in the future. Due to broad biological significance of interferon γ, our findings also provide a capability to understand the diverse functions of CF.


Asunto(s)
Ácidos Cumáricos , Células Asesinas Naturales , Neoplasias , Receptores de Interferón , Animales , Ratones , Interferón gamma/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Microambiente Tumoral , Ácidos Cumáricos/farmacología , Receptores de Interferón/inmunología , Receptor de Interferón gamma
10.
Mol Med ; 30(1): 39, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493090

RESUMEN

OBJECTIVE: Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS: Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS: Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION: Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.


Asunto(s)
Anestésicos por Inhalación , Disfunción Cognitiva , Éteres Metílicos , Anciano , Animales , Humanos , Lactante , Ratas , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/metabolismo , Cognición , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Éteres Metílicos/farmacología , Éteres Metílicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sevoflurano/metabolismo , Sevoflurano/farmacología , Proteínas tau/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo
11.
Small ; : e2400220, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366315

RESUMEN

The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.

12.
Opt Lett ; 49(7): 1824-1827, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560874

RESUMEN

Lanthanide-doped upconversion (UC) materials have been extensively investigated for their unique capability to convert low-energy excitation into high-energy emission. Contrary to previous reports suggesting that efficient UC luminescence (UCL) is exclusively observed in materials with a wide bandgap, we have discovered in this study that Y2Mo4O15:Yb3+/Tm3+ microcrystals, a narrowband material, exhibit highly efficient UC emission. Remarkably, these microcrystals do not display any four- or five-photon UC emission bands. This particular optical phenomenon is independent of the variation in doping ion concentration, temperature, phonon energy, and excitation power density. Combining theoretical calculations and experimental results, we attribute the vanishing emission bands to the strong interaction between the bandgap of the Y2Mo4O15 host matrix (3.37 eV) and the high-energy levels (1I6 and 1D2) of Tm3+ ions. This interaction can effectively catalyze the UC emission process of Tm3+ ions, which leads to Y2Mo4O15:Yb3+/Tm3+ microcrystals possessing very strong UCL intensity. The brightness of these microcrystals outshines commercial UC NaYF4:Yb3+,Er3+ green phosphors by a factor of 10 and is 1.4 times greater than that of UC NaYF4:Yb3+,Tm3+ blue phosphors. Ultimately, Y2Mo4O15:Yb3+/Tm3+ microcrystals, with their distinctive optical characteristics, are being tailored for sophisticated anti-counterfeiting and information encryption applications.

13.
Opt Lett ; 49(11): 2978-2981, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824307

RESUMEN

Upconversion (UC) materials are renowned for their ability to convert low-energy photons into high-energy ones. The manipulation of parameters allows for the observation of multicolored UC luminescence (UCL) within a single material system. While modulation of multicolored UCL commonly relies on excitation at approximately 980 nm, investigation into multicolored UC materials activated by a 1532 nm excitation source remains comparatively scarce. In this work, we introduce NaLnF4:Er3+ as a novel class of smart luminescent materials. When the power density of a 1532 nm laser increases from 0.5 to 20.0 W/cm2, the emission peak positions remain unchanged, but the red-to-green (R/G) ratio decreases significantly from 18.82 to 1.48, inducing a color shift from red to yellow and ultimately to green. In contrast, no color variation is observed when NaLnF4:Er3+ is excited with a 980 nm laser at different power densities. This power-dependent multicolored UCL of NaLnF4:Er3+ excited at 1532 nm can be attributed to the competitive processes of upward pumping and downward relaxation of electrons on the 4I9/2 level of Er3+. By utilizing the unique UC characteristics of NaLnF4:Er3+, its potential utility in anti-counterfeiting applications is demonstrated. Our research highlights the distinctive optical properties of NaLnF4:Er3+ and provides novel insights into the use of luminescent materials in optical anti-counterfeiting technologies.

14.
Exp Eye Res ; 244: 109936, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763351

RESUMEN

Non-infectious uveitis is an intraocular autoimmune disease mainly characterized by immune dysregulation of the eye, which may cause blindness if not well treated. Interleukin 10 (IL-10) is a potent cytokine with multiple immunoregulatory functions. However, it's in vivo activity is unstable owing to its inherent protein instability and short plasma half-life. Therefore, our previous research tried to establish IL-10-overexpressing MSC-sEVs (sEVs-IL10) using lentiviral transfection. While this approach indeed improved drug delivery, it also suffered from tedious procedures and limited loading efficiency. Accordingly, we constructed a novel MSC-sEVs-based delivery system for IL-10 (IL-10@sEVs) by sonication. The obtained formulation (IL-10@sEVs) had relatively higher loading efficiency and exerted a more profound immunomodulatory effect than sEVs-IL10 in vitro. Furthermore, IL-10@sEVs had significant therapeutic effects in a mouse model of experimental autoimmune uveitis (EAU) by decreasing the percentage of Th17 cells, increasing regulatory T cells in the eye, and draining lymph nodes. In summary, sonication outperforms conventional transfection methods for loading IL-10 into MSC-sEVs.


Asunto(s)
Enfermedades Autoinmunes , Vesículas Extracelulares , Interleucina-10 , Uveítis , Animales , Femenino , Ratones , Enfermedades Autoinmunes/tratamiento farmacológico , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Interleucina-10/genética , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Transfección , Uveítis/tratamiento farmacológico
15.
Exp Eye Res ; 239: 109752, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123010

RESUMEN

Fuchs uveitis syndrome (FUS) is a commonly misdiagnosed uveitis syndrome often presenting as an asymptomatic mild inflammatory condition until complications arise. The diagnosis of this disease remains clinical because of the lack of specific laboratory tests. The aqueous humor (AH) is a complex fluid containing nutrients and metabolic wastes from the eye. Changes in the AH protein provide important information for diagnosing intraocular diseases. This study aimed to analyze the proteomic profile of AH in individuals diagnosed with FUS and to identify potential biomarkers of the disease. We used liquid chromatography-tandem mass spectrometry-based proteomic methods to evaluate the AH protein profiles of all 37 samples, comprising 15 patients with FUS, six patients with Posner-Schlossman syndrome (PSS), and 16 patients with age-related cataract. A total of 538 proteins were identified from a comprehensive spectral library of 634 proteins. Subsequent differential expression analysis, enrichment analysis, and construction of key sub-networks revealed that the inflammatory response, complement activation and hypoxia might be crucial in mediating the process of FUS. The hypoxia inducible factor-1 may serve as a key regulator and therapeutic target. Additionally, the innate and adaptive immune responses are considered dominant in the patients with FUS. A diagnostic model was constructed using machine-learning algorithm to classify FUS, PSS, and normal controls. Two proteins, complement C1q subcomponent subunit B and secretogranin-1, were found to have the highest scores by the Extreme Gradient Boosting, suggesting their potential utility as a biomarker panel. Furthermore, these two proteins as biomarkers were validated in a cohort of 18 patients using high resolution multiple reaction monitoring assays. Therefore, this study contributes to advancing of the current knowledge of FUS pathogenesis and promotes the development of effective diagnostic strategies.


Asunto(s)
Glaucoma de Ángulo Abierto , Uveítis , Humanos , Humor Acuoso/metabolismo , Proteómica , Uveítis/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Biomarcadores/metabolismo , Hipoxia/metabolismo
16.
Exp Eye Res ; 239: 109724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981180

RESUMEN

Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Retinopatía Diabética/metabolismo , Edema Macular/metabolismo , Humor Acuoso/metabolismo , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diabetes Mellitus/metabolismo
17.
J Org Chem ; 89(3): 1748-1752, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38262733

RESUMEN

A highly enantioselective catalytic reduction of pyrazolo[1,5-a]pyrimidine to zanubrutinib has been realized by the Ir/(R)-t-Bu-FcPhox complex. This chiral product could be obtained in up to >99% ee in the asymmetric transformation without any other additives, providing a new route for the asymmetric synthesis of zanubrutinib.

18.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 186-193, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372096

RESUMEN

Hepatocellular carcinoma is the most common form of liver tumor. m6A modification and noncoding RNA show indispensable roles in HCC. We sought to establish and verify an appropriate m6A-related long noncoding RNA prognostic tool for predicting hepatocellular carcinoma progression. We extracted the RNA expression levels and the clinicopathologic data from GTEx and TCGA databases. Multivariate Cox regression analysis and receiver operating characteristic curves were performed to test the model's predictive ability. We further built a nomogram for overall survival according to the risk score and clinical features. A competing endogenous RNA network and Gene Ontology assessment were implemented to identify related biological mechanisms and processes. By bioinformatics analysis, a risk model comprising GABPB1-AS1, AC025580.1, LINC01358, AC026356.1, AC009005.1, HCG15, and AC026368.1 was built to offer a prognostic prediction for hepatocellular carcinoma independently. The prognostic tool could better prognosticate hepatocellular carcinoma patients' survival than other clinical characteristics. Then, a nomogram with risk score and clinical characteristics was created, which had strong power to calculate the survival probability in hepatocellular carcinoma. The immune-associated processes involving the differentially expressed genes between the two subgroups were displayed. Analyses of prognosis, clinicopathological characteristics, tumor mutation burden, immune checkpoint molecules, and drug response showed significant differences among the two risk subtypes, hinting that the model could appraise the efficacy of immunotherapy and chemotherapy. The tool can independently predict the prognosis in patients with hepatocellular carcinoma, which benefits drug selection in hepatocellular carcinoma patients.


Asunto(s)
Adenina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , ARN Largo no Codificante/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética
19.
Environ Res ; 252(Pt 1): 118767, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527725

RESUMEN

There is unclear evidence available on the associations between multiple metals and fasting blood glucose (FBG) in children, and whether they could be beneficial from physical activity. We included 283 children aged 4-12 years from two panel studies with 4-consecutive morning urinary 13 essential metals and 10 non-essential metals repeated across 3 seasons. We employed multiple informant model, linear mixed-effect model, and quantile g-computation to evaluate associations of single metal and their mixture with FBG and interactions with extra-school activity. The results showed that positive relations of multiple essential metals (aluminum, chromium, copper, iron, molybdenum (Mo), nickel, selenium (Se), strontium, zinc) and non-essential metals (arsenic (As), cadmium (Cd), rubidium, titanium (Ti), thallium) with FBG were the strongest at lag 0 (the health examination day), especially in overweight & obesity children (FDR <0.05). The strongest effect presented 1-fold increment in As was related to FBG increased 1.66% (95%CI: 0.84%, 2.48%) in overweight & obesity children. Notably, modification of extra-school activity showed significant, and the effects of multiple metals on FBG were attenuated in children taking total extra-school activity ≥1 h/day, and only one type of which, low or moderate & high intensity extra-school activity reached 20 min/day (Pint <0.05). For instance, each 1-fold increased As was associated with 1.41% increased FBG in overall children taking total extra-school activity <1 h/day, while that of 0.13% in those ≥1 h/day. Meanwhile, mixture of all, essential and non-essential metals were associated with increased FBG, a trend that decreased and became nonsignificant in children having certain extra-school activity, which were dominated by Mo, Se, Ti, Cd. And such relations were substantially beneficial from extra-school activity in overweight & obesity children. Accordingly, multiple essential and non-essential metals, both individual and in mixture, were positively related to FBG in children, which might be attenuated by regular physical activity.


Asunto(s)
Glucemia , Ejercicio Físico , Metales , Humanos , Niño , Preescolar , Femenino , Masculino , Glucemia/análisis , Metales/orina , Ayuno , Contaminantes Ambientales/orina
20.
Environ Res ; 250: 118390, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331139

RESUMEN

Wetlands are the largest natural sources of methane (CH4) emissions worldwide. Littoral wetlands of urban lakes represent an ecotone between aquatic and terrestrial ecosystems and are strongly influenced by water levels, environmental conditions, and anthropogenic activities. Despite these littoral zones being potential "hotspots" of CH4 emissions, the status of CH4 emissions therein and the role of physicochemical properties and microbial communities regulating these emissions remain unclear. This study compared the CH4 fluxes, physicochemical properties, and CH4-cycling microbial communities (methanogens and methanotrophs) of three zones (a non-flooded supralittoral zone, a semi-flooded eulittoral zone, and a flooded infralittoral zone) in the littoral wetlands of Lake Pipa, Jiangsu Province, China, for two seasons (summer and winter). The eulittoral zone was a CH4 source (median: 11.49 and 0.02 mg m-2 h-1 in summer and winter, respectively), whereas the supralittoral zone acted as a CH4 sink (median: -0.78 and -0.09 mg m-2 h-1 in summer and winter, respectively). The infralittoral zone shifted from CH4 sink to source between the summer (median: -10.65 mg m-2 h-1) and winter (median: 0.11 mg m-2 h-1). The analysis of the functional genes of methanogenesis (mcrA) and methanotrophy (pmoA) and path analysis showed that CH4 fluxes were strongly regulated by biotic factors (abundance of the mcrA gene and alpha diversity of CH4-cycling microbial communities) and abiotic factors (ammonia nitrogen, moisture, and soil organic carbon). In particular, biotic factors had a major influence on the variation in the CH4 flux, whereas abiotic factors had a minor influence. Our findings provide novel insights into the spatial and seasonal variations in CH4-cycling microbial communities and identify the key factors influencing CH4 fluxes in littoral wetlands. These results are important for managing nutrient inputs and regulating the hydrological regimes of urban lakes.


Asunto(s)
Inundaciones , Lagos , Metano , Microbiota , Estaciones del Año , Humedales , Metano/análisis , Metano/metabolismo , Lagos/microbiología , Lagos/química , China , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA