Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650452

RESUMEN

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Clorofila A , Nitrógeno/metabolismo , Té/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Appl Opt ; 62(4): 1046-1056, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821162

RESUMEN

A broadband and CMOS-compatible polarization beam splitter and rotator (PSR) built on the silicon nitride-on-silicon multilayer platform is presented. The PSR is realized by cascading a polarization beam splitter and a polarization rotator, which are both subtly constructed with an asymmetrical directional coupler waveguide structure. The advantage of this device is that the function of PSR can be directly realized in the SiN layer, providing a promising solution to the polarization diversity schemes in SiN photonic circuits. The chip is expected to have high power handling capability as the light is input from the SiN waveguide. The use of silicon dioxide as the upper cladding of the device ensures its compatibility with the metal back-end-of-line process. By optimizing the structure parameters, a polarization conversion loss lower than 1 dB and cross talk larger than 27.6 dB can be obtained for TM-TE mode conversion over a wavelength range of 1450 to 1600 nm. For TE mode, the insertion loss is lower than 0.26 dB and cross talk is larger than 25.3 dB over the same wavelength range. The proposed device has good potential in diversifying the functionalities of the multilayer photonic chip with high integration density.

3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203412

RESUMEN

Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Metaboloma , Hojas de la Planta/metabolismo , Transcriptoma
4.
BMC Plant Biol ; 22(1): 319, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787241

RESUMEN

BACKGROUND: Tea plant breeding or cultivation mainly involves propagation via cuttings, which not only ensures the inheritance of the excellent characteristics of the mother plant but also facilitates mechanized management. The formation of adventitious root (AR) determines the success of cutting-based propagation, and auxin is an essential factor involved in this process. To understand the molecular mechanism underlying AR formation in nodal tea cuttings, transcriptome and endogenous hormone analysis was performed on the stem bases of red (mature)- and green (immature)-stem cuttings of 'Echa 1 hao' tea plant as affected by a pulse treatment with naphthalene acetic acid (NAA). RESULTS: In this study, NAA significantly promoted AR formation in both red- and green-stem cuttings but slightly reduced callus formation. External application of NAA reduced the levels of endogenous indole-3-acetic acid (IAA) and cytokinin (TZR, trans-zeatin riboside). The number of DEGs (NAA vs. CK) identified in the green-stem cuttings was significantly higher than that in the red-stem cuttings, which corresponded to a higher rooting rate of green-stem cuttings under the NAA treatment. A total of 82 common DEGs were identified as being hormone-related and involved in the auxin, cytokinin, abscisic acid, ethylene, salicylic acid, brassinosteroid, and jasmonic acid pathways. The negative regulation of NAA-induced IAA and GH3 genes may explain the decrease of endogenous IAA. NAA reduced endogenous cytokinin levels and further downregulated the expression of cytokinin signalling-related genes. By the use of weighted gene co-expression network analysis (WGCNA), several hub genes, including three [cellulose synthase (CSLD2), SHAVEN3-like 1 (SVL1), SMALL AUXIN UP RNA (SAUR21)] that are highly related to root development in other crops, were identified that might play important roles in AR formation in tea cuttings. CONCLUSIONS: NAA promotes the formation of AR of tea cuttings in coordination with endogenous hormones. The most important endogenous AR inductor, IAA, was reduced in response to NAA. DEGs potentially involved in NAA-mediated AR formation of tea plant stem cuttings were identified via comparative transcriptome analysis. Several hub genes, such as CSLD2, SVL1 and SAUR21, were identified that might play important roles in AR formation in tea cuttings.


Asunto(s)
Camellia sinensis , Acetatos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Citocininas/metabolismo , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Naftalenos/metabolismo , Fitomejoramiento , Raíces de Plantas/metabolismo , , Transcriptoma
5.
BMC Cancer ; 22(1): 657, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701738

RESUMEN

BACKGROUND AND PURPOSE: We aimed to explore the necessity of the external iliac lymph nodes (EIN) along with inguinal nodes (IN) region in clinical target volume (CTV) for rectal carcinomas covering the anal canal region. MATERIALS AND METHODS: This research premise enrolled 399 patients who had primary low rectal cancer detected below the peritoneal reflection via magnetic resonance imaging (MRI) and were treated with neoadjuvant radiotherapy (NRT), without elective EIN along with IN irradiation. We stratified the patients into two groups based on whether the lower edge of the rectal tumor extended to the anal canal (P group, n = 109) or not (Rb group, n = 290). Comparison of overall survival (OS), locoregional recurrence-free survival (LRFS), disease-free survival (DFS), as well as distant metastasis-free survival (DMFS) were performed via inverse probability of treatment weighting (IPTW) along with multivariable analyses. We compared the EIN and IN failure rates between the two groups via the Fisher and Gray's test. RESULTS: P group showed a similar adjusted proportion along with five-year cumulative rate of EIN failure compared with the Rb group. The adjusted proportion and five-year cumulative rate of IN failure in the P group was higher in comparison to the Rb group. There were no remarkable differences in the adjusted five-year OS, DFS, DMFS or LRFS between the two groups. Anal canal involvement (ACI) exhibited no effect on OS, LRFS, DFS, or DMFS. CONCLUSIONS: During NRT for rectal cancer with ACI, it may be possible to exclude the EIN and IN from the CTV.


Asunto(s)
Linfadenopatía , Neoplasias del Recto , Canal Anal/patología , Humanos , Ganglios Linfáticos/patología , Linfadenopatía/patología , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pelvis/patología , Pronóstico , Neoplasias del Recto/patología , Estudios Retrospectivos
6.
Appl Opt ; 61(26): 7798-7806, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256383

RESUMEN

A CMOS-compatible, broadband, and polarization-independent edge coupler for efficient chip coupling with standard single-mode fiber is proposed. Three layers of a silicon nitride waveguide array with the same structures are used in the top oxide cladding of the chip to achieve high coupling efficiency and to simplify the mode transformation structure. Optimal total coupling loss at the wavelength of 1550 nm, -0.49dB for TE mode polarization and -0.92dB for TM mode polarization is obtained. The -1dB bandwidth is beyond 160 nm for TE mode polarization and ∼130nm for TM mode polarization, respectively. A significant reduction in the packaging cost of silicon photonic chips is anticipated. Meanwhile, the structure holds vast potential for on-chip three-dimensional photonic integrations or fiber-to-chip, chip-to-chip optical interconnections.

7.
Plant J ; 97(5): 825-840, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30447121

RESUMEN

Cultivars of purple tea (Camellia sinensis) that accumulate anthocyanins in place of catechins are currently attracting global interest in their use as functional health beverages. RNA-seq of normal (LJ43) and purple Zijuan (ZJ) cultivars identified the transcription factor CsMYB75 and phi (F) class glutathione transferase CsGSTF1 as being associated with anthocyanin hyperaccumulation. Both genes mapped as a quantitative trait locus (QTL) to the purple bud leaf color (BLC) trait in F1 populations, with CsMYB75 promoting the expression of CsGSTF1 in transgenic tobacco (Nicotiana tabacum). Although CsMYB75 elevates the biosynthesis of both catechins and anthocyanins, only anthocyanins accumulate in purple tea, indicating selective downstream regulation. As glutathione transferases in other plants are known to act as transporters (ligandins) of flavonoids, directing them for vacuolar deposition, the role of CsGSTF1 in selective anthocyanin accumulation was investigated. In tea, anthocyanins accumulate in multiple vesicles, with the expression of CsGSTF1 correlated with BLC, but not with catechin content, in diverse germplasm. Complementation of the Arabidopsis tt19-8 mutant, which is unable to express the orthologous ligandin AtGSTF12, restored anthocyanin accumulation, but did not rescue the transparent testa phenotype, confirming that CsGSTF1 did not function in catechin accumulation. Consistent with a ligandin function, transient expression of CsGSTF1 in Nicotiana occurred in the nucleus, cytoplasm and membrane. Furthermore, RNA-Seq of the complemented mutants exposed to 2% sucrose as a stress treatment showed unexpected roles for anthocyanin accumulation in affecting the expression of genes involved in redox responses, phosphate homeostasis and the biogenesis of photosynthetic components, as compared with non-complemented plants.


Asunto(s)
Antocianinas/metabolismo , Camellia sinensis/genética , Flavonoides/biosíntesis , Glutatión Transferasa/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/enzimología , Camellia sinensis/fisiología , Genómica , Glutatión Transferasa/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , RNA-Seq , Estrés Fisiológico , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética
8.
J Org Chem ; 84(9): 5046-5055, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-30901517

RESUMEN

Herein we describe a highly chemoselective A3-coupling/annulation of amino alcohols, formaldehyde, two kinds of aldehydes and alkynes, catalyzed by copper(II). This cascade reaction, employing readily available materials, provides a new and highly effective access to chiral N-propargyl oxazolidines with good diastereoselectivity (up to >20:1). In the case of ortho-substituted aromatic aldehydes, an intriguing steric effect is observed: a bulky group exhibits a remarkably adverse effect on the diastereoselectivity for the formation of the title molecule.

10.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489906

RESUMEN

Effector proteins secreted by plant pathogens play important roles in promoting colonization. Blumeria effector candidate (BEC) 1019, a highly conserved metalloprotease of Blumeria graminis f. sp. hordei (Bgh), is essential for fungal haustorium formation, and silencing BEC1019 significantly reduces Bgh virulence. In this study, we found that BEC1019 homologs in B. graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis var. tritici (Ggt) have complete sequence identity with those in Bgh, prompting us to investigate their functions. Transcript levels of BEC1019 were abundantly induced concomitant with haustorium formation in Bgt and necrosis development in Ggt-infected plants. BEC1019 overexpression considerably increased wheat susceptibility to Bgt and Ggt, whereas silencing this gene using host-induced gene silencing significantly enhanced wheat resistance to Bgt and Ggt, which was associated with hydrogen peroxide accumulation, cell death, and pathogenesis-related gene expression. Additionally, we found that the full and partial sequences of BEC1019 can trigger cell death in Nicotiana benthamiana leaves. These results indicate that Bgt and Ggt can utilize BEC1019 as a virulence effector to promote plant colonization, and thus these genes represent promising new targets in breeding wheat cultivars with broad-spectrum resistance.


Asunto(s)
Predisposición Genética a la Enfermedad , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Secuencia de Bases , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Fenotipo
11.
Opt Express ; 26(8): 9645-9654, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715913

RESUMEN

In this work, we present a nonlinear silicon nitride waveguide. These waveguide are fabricated by readily available PECVD, conventional contact UV-lithography and high-temperature annealing techniques, thus dramatically reducing the processing complexity and cost. By patterning the waveguide structures firstly and then carrying out a high-temperature annealing process, not only sufficient waveguide thickness can be achieved, which gives more freedom to waveguide dispersion control, but also the material absorption loss in the waveguides be greatly reduced. The linear optical loss of the fabricated waveguide with a cross-section of 2.0 × 0.58 µm2 was measured to be as low as 0.58 dB/cm. The same loss level is demonstrated over a broad wavelength range from 1500 nm to 1630 nm. Moreover, the nonlinear refractive index of the waveguide was determined to be ~6.94 × 10-19 m2/W, indicating that comparable nonlinear performance with their LPCVD counterparts is expected. These silicon nitride waveguides based on a PECVD deposition platform can be useful for the development of more complicated on-chip nonlinear optical devices or circuits.

13.
Environ Sci Pollut Res Int ; 30(11): 29243-29257, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36409416

RESUMEN

The purpose of this paper is to quantify the level of new-type urbanization and unravel the spatial and nonlinear effects of new-type urbanization and technological innovation on industrial carbon emissions. Although the impact of traditional urbanization levels on carbon emissions has been widely studied, there is still a huge room for optimization, and the impact of new-type urbanization on carbon emissions has not yet been clarified. Selecting 37 cities in the Yangtze River Delta as a research sample, this paper measures the new-type urbanization based on an evaluation system we build. Consequently, we assess the spatial and nonlinear effects of new-type urbanization and technological innovation on carbon emissions by the spatial Durbin model and non-parameter addictive model, respectively. The results indicate that the new-type urbanization and low-carbon city pilot policy have significant spatial spillover effects on reducing carbon dioxide emissions, while the economic growth plays a positive role in increasing carbon emission. As for nonlinear effects, there is a significant inverted "N"-shaped relationship between the level of new-type urbanization and carbon dioxide emissions, while the nexus between technological innovation and carbon emissions is an inverted "U"-shaped relationship. This paper provides a new perspective for confirming the mechanism of the new-type urbanization on carbon emissions. Meanwhile, these findings are of significance for the relevant authorities in China to develop appropriate policy in carbon dioxide emission reduction.


Asunto(s)
Dióxido de Carbono , Urbanización , Dióxido de Carbono/análisis , Invenciones , Ríos , Industrias , Ciudades , Desarrollo Económico , China
14.
Blood Press Monit ; 28(5): 268-275, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382121

RESUMEN

OBJECTIVE: We used our established database to investigate predialysis blood pressure (BP) measurements at different time points. METHODS: Our study period spanned from 1 January 2019 to 31 December 2019. The different time points included: the long interdialytic interval versus the short interdialytic interval; different hemodialysis shifts. Multiple linear regression was used to explore the association between BP measurements and different time points. RESULTS: A total of 37 081 cases of hemodialysis therapies were included. After a long interdialytic interval, predialysis SBP and DBP were significantly elevated. Predialysis BP was 147.72/86.73 mmHg on Monday and 148.26/86.52 mmHg on Tuesday, respectively. Both predialysis SBP and DBP were higher in the a.m. shift. The mean BP in the a.m. and p.m. shifts were 147.56/87 mmHg and 144.83/84.64 mmHg, respectively. In both diabetic nephropathy and non-diabetic nephropathy patients, higher SBP measurements after a long interdialytic interval were observed; however, in diabetic nephropathy patients, we did not find significant differences in DBP among different dates. In diabetic nephropathy and non-diabetic nephropathy patients, we observed that the effect of different shifts on BP was similar. In Monday, Wednesday and Friday subgroups, the long interdialytic interval was also associated with BP; however, in Tuesday, Thursday and Saturday subgroups, different shifts but not the long interdialytic interval was associated with BP. CONCLUSION: The long interdialytic interval and different hemodialysis shifts have a significant effect on predialysis BP in patients with hemodialysis. When interpreting BP in patients with hemodialysis, different time points is a confounder.


Asunto(s)
Fallo Renal Crónico , Diálisis Renal , Humanos , Presión Sanguínea/fisiología , Presión Arterial , Determinación de la Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Fallo Renal Crónico/complicaciones
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122739, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084684

RESUMEN

Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 µM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Ratones , Animales , Células HeLa , Colorantes Fluorescentes/química , Microscopía Fluorescente , Imagen Óptica , Sulfuro de Hidrógeno/química , Inflamación/diagnóstico por imagen
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122624, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933443

RESUMEN

Peroxynitrite (OONO-) is closely related to the occurrence and development of health and inflammatory diseases. The physiological and pathological results of OONO- are related to the local concentration of ONOO-. Therefore, to develop of a simple, rapid and reliable OONO- detection tool is badly needed. In this work, we developed a small-molecule near-infrared (NIR) turn-on fluorescence sensor (NN1), harnessing a well-known response group phenylboronic acid response toward OONO-. It shows high detection sensitivity and yields a ratio (I658/I0) fluorescence enhancement (∼280-fold). In addition, NN1 can be effectively used to detect endogenous and exogenous ONOO- in living inflammatory cells. Notably, NN1 can be applied to OONO- imaging analysis in drug-induced inflammatory mice model with satisfactory results. Therefore, NN1 is a robust molecular biological tool, which has a good prospect in the study of ONOO- and the occurrence and development of inflammatory diseases.


Asunto(s)
Diagnóstico por Imagen , Colorantes Fluorescentes , Animales , Ratones , Fluorescencia , Ácido Peroxinitroso/análisis , Imagen Óptica
17.
Plants (Basel) ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771765

RESUMEN

Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria (Bradyrhizobium japonicum) and PSMs (Saccharomyces cerevisiae and Saccharomyces exiguus) on atmospheric N2-fixation, growth, and yield. The results indicate a significant influence of interaction on Indole-3-acetic acid production, P solubilization, seedling germination, and growth. It was also found that atmospheric N2-fixation, nodule number per plant, nodule dry weight, straw, and root dry weight per plant at different growth stages were significantly increased under dual inoculation treatments relative to single inoculation or no inoculation treatment. Increased seed yield and N and P accumulation were also noticed under co-inoculation treatments. Soil available N was highest under sole bacterial inoculation and lowest under the control treatment, while soil available P was highest under co-inoculation treatments and lowest under the control treatment. We demonstrated that the co-inoculation of N-fixing bacteria and PSMs enhances P bioavailability and atmospheric N2-fixation in soybeans leading to improved soil fertility, raising crop yields, and promoting sustainable agriculture.

18.
Front Cardiovasc Med ; 9: 820483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369290

RESUMEN

Objective: To investigate a seasonal variation in blood pressure (BP) for patients undergoing hemodialysis (HD). Methods: In this retrospective study, we exported all BP measurements from the information system to investigate a seasonal variation of BP. We also investigated a seasonal variation in BP for patients of different gender types, of different age groups, with diabetic nephropathy (DN), and with non-DN having HD. Multiple linear regression models were used to explore the associations between BP and climatic parameters. Results: In 2019, a total of 367 patients had received HD therapy in the Longwen HD unit. We included nearly 40,000 pre-dialysis BP measurements. The result of our study demonstrated a clear seasonal variation in pre-dialysis BP in general patients with HD, in male and female patients, and patients with DN and non-DN. December seemed to be a peak in the values of pre-dialysis systolic BP (SBP) and diastolic BP (DBP). The nadir values of pre-dialysis SBP and DBP were observed in June and July, respectively. A difference between peak and nadir values of BP is 3.81/2.20 mmHg in patients undergoing HD. Maximal seasonal variation in BP is 9.03/5.08 mmHg for patients with DN. A significant association of SBP and DBP with climatic parameters was found in this study. Pre-dialysis BP was inversely correlated with outdoor temperature, daytime length, and relative humidity. Conclusion: A clear seasonal variation in BP is observed for patients with HD. Pre-dialysis SBP and DBP are inversely associated with outdoor temperature, daytime length, and relative humidity. The magnitude of a seasonal variation in BP increases in patients with DN.

19.
Int Immunopharmacol ; 106: 108564, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35158228

RESUMEN

The gut is hypothesized to be the "motor" of critical illness and plays an important role in the development of sepsis. Berberine (BBR) is an alkaloid compound extracted from herbs, which has anti-inflammatory, anti-oxidative effects and can be used in intestinal infectious diseases and inflammatory bowel disease (IBD). BBR could promote differentiation of Treg cells which play a key role in maintaining intestinal immune homeostasis. However, its effect on sepsis-induced intestinal injury remains poorly understood. This study investigated the effect of BBR on cecal ligation and puncture (CLP)-induced intestinal injury and explained the underlying mechanism. These results showed that BBR treatment decreased the mortality of septic mice, alleviated intestinal injury and reduced serum endotoxin level; at the same time, BBR had a protective effect on CLP-induced lung and liver apoptosis. Meanwhile, BBR treatment increased the proportion of Treg cells and CTLA-4 in Treg cells. Treg cells from BBR treatment mice could decrease the pro-inflammatory response by inhibiting the activation of macrophages, thus exerting a protective effect on CLP-induced intestinal injury, and CTLA-4 mediated cell-cell contact pathway is required for this protective effect.


Asunto(s)
Berberina , Sepsis , Animales , Berberina/farmacología , Berberina/uso terapéutico , Ciego/cirugía , Ligadura , Ratones , Punciones , Sepsis/tratamiento farmacológico , Linfocitos T Reguladores
20.
Front Plant Sci ; 13: 1033316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589051

RESUMEN

Caffeine is a characteristic secondary metabolite in tea plants. It confers tea beverage with unique flavor and excitation effect on human body. The pathway of caffeine biosynthesis has been generally established, but the mechanism of caffeine transport remains unclear. Here, eight members of purine permeases (PUPs) were identified in tea plants. They had diverse expression patterns in different tissues, suggesting their broad roles in caffeine metabolism. In this study, F1 strains of "Longjing43" ♂ × "Baihaozao" ♀ and different tea cultivars were used as materials to explore the correlation between caffeine content and gene expression. The heterologous expression systems of yeast and Arabidopsis were applied to explore the function of CsPUPs. Correlation analysis showed that the expressions of CsPUP1, CsPUP3.1, and CsPUP10.1 were significantly negatively correlated with caffeine content in tea leaves of eight strains and six cultivars. Furthermore, subcellular localization revealed that the three CsPUPs were not only located in plasma membrane but also widely distributed as circular organelles in cells. Functional complementation assays in yeast showed that the three CsPUPs could partly or completely rescue the defective function of fcy2 mutant in caffeine transport. Among them, transgenic yeast of CsPUP10.1 exhibited the strongest transport capacity for caffeine. Consistent phenotypes and functions were further identified in the CsPUP10.1-over-expression Arabidopsis lines. Taken together, it suggested that CsPUPs were involved in caffeine transport in tea plants. Potential roles of CsPUPs in the intracellular transport of caffeine among different subcellular organelles were proposed. This study provides a theoretical basis for further research on the PUP genes and new insights for caffeine metabolism in tea plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA