Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aging Dis ; 13(3): 773-786, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35656103

RESUMEN

Atherosclerosis, the pathological basis of most cardiovascular disease, is characterized by plaque formation in the intima. Secondary lesions include intraplaque hemorrhage, plaque rupture, and local thrombosis. Vascular endothelial function impairment and smooth muscle cell migration lead to vascular dysfunction, which is conducive to the formation of macrophage-derived foam cells and aggravates inflammatory response and lipid accumulation that cause atherosclerosis. Histone deacetylase (HDAC) is an epigenetic modifying enzyme closely related to chromatin structure and gene transcriptional regulation. Emerging studies have demonstrated that the Class I member HDAC3 of the HDAC super family has cell-specific functions in atherosclerosis, including 1) maintenance of endothelial integrity and functions, 2) regulation of vascular smooth muscle cell proliferation and migration, 3) modulation of macrophage phenotype, and 4) influence on foam cell formation. Although several studies have shown that HDAC3 may be a promising therapeutic target, only a few HDAC3-selective inhibitors have been thoroughly researched and reported. Here, we specifically summarize the impact of HDAC3 and its inhibitors on vascular function, inflammation, lipid accumulation, and plaque stability in the development of atherosclerosis with the hopes of opening up new opportunities for the treatment of cardiovascular diseases.

2.
Front Cardiovasc Med ; 8: 798699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071362

RESUMEN

Endothelial dysfunction is considered to be an early change in atherosclerosis. Endocan, also known as endothelial cell specific molecule-1, is a soluble proteoglycan mainly secreted by endothelial cells. Inflammatory factors such as IL-1ß and TNF-α can up regulate the expression of endocan and then affect the expression of cell adhesion molecules, such as ICAM-1 and VCAM-1, which play an important role in promoting leukocyte migration and inflammatory response. Elevated plasma levels of endocan may reflect endothelial activation and dysfunction, and is considered to be a potential immuno-inflammatory marker that may be related to cardiovascular disease. In the case of hypertension, diabetes, angina pectoris and acute myocardial infarction, the increase or decrease of serum endocan levels is of great significance. Here, we reviewed the current research on endocan, and emphasis its possible clinical value as a prognostic marker of cardiovascular disease. Endocan may be a useful biomarker for the prognosis of cardiovascular disease, but more research is needed on its mechanism of action.

3.
Exp Ther Med ; 22(5): 1270, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34594407

RESUMEN

Brain disorders, such as Alzheimer's and Parkinson's disease and cerebral stroke, are an important contributor to mortality and disability worldwide, where their pathogenesis is currently a topic of intense research. The mechanisms underlying the development of brain disorders are complex and vary widely, including aberrant protein aggregation, ischemic cell necrosis and neuronal dysfunction. Previous studies have found that the expression and function of growth differentiation factor-15 (GDF15) is closely associated with the incidence of brain disorders. GDF15 is a member of the TGFß superfamily, which is a dimer-structured stress-response protein. The expression of GDF15 is regulated by a number of proteins upstream, including p53, early growth response-1, non-coding RNAs and hormones. In particular, GDF15 has been reported to serve an important role in regulating angiogenesis, apoptosis, lipid metabolism and inflammation. For example, GDF15 can promote angiogenesis by promoting the proliferation of human umbilical vein endothelial cells, apoptosis of prostate cancer cells and fat metabolism in fasted mice, and GDF15 can decrease the inflammatory response of lipopolysaccharide-treated mice. The present article reviews the structure and biosynthesis of GDF15, in addition to the possible roles of GDF15 in Alzheimer's disease, cerebral stroke and Parkinson's disease. The purpose of the present review is to summarize the mechanism underlying the role of GDF15 in various brain disorders, which hopes to provide evidence and guide the prevention and treatment of these debilitating conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA