Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 269: 115906, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176135

RESUMEN

Cadmium (Cd) is known as a female reproductive toxicant. Our previous study has shown that Cd can influence the proliferation and cell cycle of granulosa cells and induce apoptosis. MicroRNAs (miRNAs) play an important role in the regulation of Cd-induced granulosa cell damage in chickens. However, the mechanism remains unclear. In this study, we investigated the mechanisms by which microRNA-129-1-3p (miR-129-1-3p) regulates Cd-induced cytotoxicity in chicken granulosa cells. As anticipated, exposure to Cd resulted in the induction of oxidative stress in granulosa cells, accompanied by the downregulation of antioxidant molecules and/or enzymes of Nrf2, Mn-SOD, Cu-Zn SOD and CAT, and the upregulation of Keap1, GST, GSH-Px, GCLM, MDA, hydrogen peroxide and mitochondrial reactive oxygen species (mtROS). Further studies found that Cd exposure causes mitochondrial calcium ions (Ca2+) overload, provoking mitochondrial damage and apoptosis by upregulating IP3R, GRP75, VDAC1, MCU, CALM1, MFF, caspase 3, and caspase 9 gene and/or protein expressions and mitochondrial Ca2+ levels, while downregulating NCX1, NCLX and MFN2 gene and/or protein expressions and mitochondrial membrane potential (MMP). The Ca2+ chelator BAPTA-AM or the MCU inhibitor MCU-i4 significantly rescued Cd-induced mitochondrial dysfunction, thereby attenuating apoptosis. Additionally, a luciferase reported assay and western blot analysis confirmed that miR-129-1-3p directly target MCU. MiR-129-1-3p overexpression almost completely inhibited protein expression of MCU, increased the gene and protein expressions of NCLX and MFN2 downregulated by Cd, and attenuated mitochondrial Ca2+ overload, MMP depression and mitochondria damage induced by Cd. Moreover, the overexpression of miR-129-1-3p led to a reduction in mtROS and cell apoptosis levels, and a suppression of the gene and protein expressions of caspase 3 and caspase 9. As above, these results provided the evidence that IP3R-MCU signaling pathway activated by Cd plays a significant role in inducing mitochondrial Ca2+ overload, mitochondrial damage, and apoptosis. MiR-129-1-3p exerts a protective effect against Cd-induced granulosa cell apoptosis through the direct inhibition of MCU expression in the ovary of laying hens.


Asunto(s)
Pollos , MicroARNs , Animales , Femenino , Pollos/genética , Pollos/metabolismo , Cadmio/metabolismo , Caspasa 3/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Caspasa 9/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Células de la Granulosa/metabolismo , Transducción de Señal
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124158, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513318

RESUMEN

A convenient, low-cost, and rapid detection of BmNPV-infected silkworms is of great significance for the safety of the sericulture industry. In this study, a portable NIR system was used to collect the spectra of normal silkworms and the infected silkworms induced by the administration of Bombyx mori nuclear polyhedrosis virus (BmNPV). Different spectral pretreatment methods were applied, then principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares discriminant analysis (PLSDA) were used for the classification analysis. The results showed that PCA and LDA were unable to achieve the purpose. For the PLSDA calibration, after the pretreatment of SNV combining 2nd derivative, it had a high identification performance, and obtained low classification errors of 0.023, 0.033, and 0.030 for the calibration set, cross-validation set, and test set, respectively, with higher sensitivity and specificity. Therefore, the BmNPV-infected silkworms can be identified by portable NIR spectroscopy, which will effectively reduce losses for the sericulture industry.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Espectroscopía Infrarroja Corta/métodos , Quimiometría
3.
Micromachines (Basel) ; 15(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930748

RESUMEN

The detection of the amount of aflatoxin M1 (AFM1) in milk is crucial for food safety. Here, we utilize a fiber optic (FO) localized surface plasmon resonance (LSPR) biosensor by constructing gold nanoparticle (AuNP) multimers, in which the nanogaps amplified the LSPR signal by the hot spot effect, and achieved a highly sensitive detection of f AFM1. Through the optimization of parameter conditions for the fabrication of the sensor and detection system, a high performance result from the FO LSPR biosensor was obtained, and the method for AFM1 detection was established, with a wide detection range of 0.05-100 ng/mL and a low limit of detection (LOD) of 0.04 ng/mL, and it has been successfully validated with the actual sample milk. Therefore, it is a good strategy to fabricate highly sensitive FO LSPR sensors for detecting AFM1 by constructing AuNP multimers, and this approach is suitable for developing other biosensors.

4.
Int J Biol Macromol ; 258(Pt 2): 129000, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158070

RESUMEN

Hydrogel systems with strong fluorescence, as convenient tracers or bio-probes, have attracted much attention in biomedical engineering. Currently, most hydrogels endowed fluorescent properties due to modifying additional fluorophores. However, these fluorophores owing to photobleaching and toxicity limit the practical applications of hydrogels. Herein, we prepared a novel self-luminescence hydrogel through double crosslinking glutaraldehyde and hydrogen peroxide/horseradish peroxidase (H2O2/HRP) with sericin protein. The double cross-linked sericin hydrogel exhibits strong green and red intrinsic fluorescence which can be excited over a wide range of wavelengths. Moreover, this hydrogel with strong intrinsic fluorescence could penetrate thick pigskin tissue, which has potential application in implantable bio-tracer areas. In addition to the above unique properties, this sericin hydrogel possesses two types of micropore structures with high porosity, swelling properties, pH-responsive degradability, super elasticity, injectability, viscosity, and excellent biocompatibility. The investigation could significantly expand the scope of protein hydrogels in biomedical applications.


Asunto(s)
Hidrogeles , Sericinas , Hidrogeles/química , Sericinas/química , Fluorescencia , Peróxido de Hidrógeno/química , Luminiscencia
5.
Biomed Mater ; 19(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38422522

RESUMEN

Wound healing in diabetics is often impaired or delayed due to the presence of high reactive oxygen species and low antioxidant levels. Here, a sericin-honey semi-interpenetrating network hydrogel with excellent antioxidant activity was prepared. Besides, the sericin-honey hydrogel is transparent, injectable, sticky, highly porous, and has good swelling properties, antibacterial activity, and cell compatibility. Based on its good performancein vitro, sericin-honey hydrogel achieved effectivein vivotreatment on a mouse diabetic wound model, significantly accelerating the wound healing process. Furthermore, the combined effect of feeding sericin solution played a positive role in strengthening the effect of diabetic wound repair.


Asunto(s)
Diabetes Mellitus , Miel , Sericinas , Ratones , Animales , Hidrogeles/farmacología , Sericinas/farmacología , Antioxidantes , Antibacterianos/farmacología , Cicatrización de Heridas
6.
Gels ; 9(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38131934

RESUMEN

The application of sericin hydrogels is limited mainly due to their poor mechanical strength, tendency to be brittle and inconvenient sterilization. To address these challenges, a sericin hydrogel exhibiting outstanding physical and chemical properties along with cytocompatibility was prepared through crosslinking genipin with degraded sericin extracted from fibroin deficient silkworm cocoons by the high temperature and pressure method. Our reported sericin hydrogels possess good elasticity, injectability, and robust behaviors. The 8% sericin hydrogel can smoothly pass through a 16 G needle. While the 12% sericin hydrogel remains intact until its compression ratio reaches 70%, accompanied by a compression strength of 674 kPa. 12% sericin hydrogel produce a maximum stretch of 740%, with breaking strength and tensile modulus of 375 kPa and 477 kPa respectively. Besides that, the hydrogel system demonstrated remarkable cell-adhesive capabilities, effectively promoting cell attachment and, proliferation. Moreover, the swelling and degradation behaviors of the hydrogels are pH responsiveness. Sericin hydrogel releases drugs in a sustained manner. Furthermore, this study addresses the challenge of sterilizing sericin hydrogels (sterilization will inevitably lead to the destruction of their structures). In addition, it challenges the prior notion that sericin extracted under high temperature and pressure is difficult to directly cross-linked into a stable hydrogel. This developed hydrogel system in this study holds promise to be a new multifunctional platform expanding the application area scope of sericin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA