RESUMEN
The relationship between aboveground biomass and plant diversity has been extensively examined to understand the role of biodiversity in ecosystem functions and services. Degraded grassland restoration projects can enhance carbon sequestration. However, the relationship between biomass and diversity remains one of the most actively debated topics regarding grassland ecosystems in degraded grassland restoration projects. We speculated that establishing the linear relationships between aboveground biomass and plant species diversity could contribute to enhancing the efficacy of degraded grassland restoration projects. This study sought to determine whether these relationships were linear during the initial stages of the restoration projects of degraded grasslands in Xing'an League, China. The investigations were based on an examination of seventy-six 1 × 1 m2 plots distributed among 15 areas in which the degraded grassland was at the initial stages of restoration. To quantify the species diversity of the degraded grassland communities, we used the species richness, Shannon-Wiener, inverse Simpson's reciprocal, and Pielou's evenness indices. Our analyses revealed that aboveground biomass had clear positive linear relationships with species richness during the initial stages of degraded grassland restoration. However, there were less pronounced associations with species diversity as assessed using the Shannon and inverse Simpson indices, based on regression models. Furthermore, weed biomass was found to have significant negative effects on species richness and Pielou's evenness. The weak linear relationship between aboveground biomass and species richness could be ascribed to an increase in weed biomass. We concluded that aboveground biomass and plant species diversity could be enhanced during the initial stages of degraded grassland restoration projects and suggest that the extent of weed biomass could serve as a key indicator of the efficacy of restoration from the perspective of plant species diversity and aboveground biomass in carbon sequestration projects.
RESUMEN
The origin of fast radio bursts (FRBs), the brightest cosmic explosion in radio bands, remains unknown. We introduce here a novel method for a comprehensive analysis of active FRBs' behaviors in the time-energy domain. Using "Pincus Index" and "Maximum Lyapunov Exponent", we were able to quantify the randomness and chaoticity, respectively, of the bursting events and put FRBs in the context of common transient physical phenomena, such as pulsar, earthquakes, and solar flares. In the bivariate time-energy domain, repeated FRB bursts' behaviors deviate significantly (more random, less chaotic) from pulsars, earthquakes, and solar flares. The waiting times between FRB bursts and the corresponding energy changes exhibit no correlation and remain unpredictable, suggesting that the emission of FRBs does not exhibit the time and energy clustering observed in seismic events. The pronounced stochasticity may arise from a singular source with high entropy or the combination of diverse emission mechanisms/sites. Consequently, our methodology serves as a pragmatic tool for illustrating the congruities and distinctions among diverse physical processes.
RESUMEN
Fast radio bursts (FRBs) are brief, intense flashes of radio waves from unidentified extragalactic sources. Polarized FRBs originate in highly magnetized environments. We report observations of the repeating FRB 20190520B spanning 17 months, which show that the FRB's Faraday rotation is highly variable and twice changes sign. The FRB also depolarizes below radio frequencies of about 1 to 3 gigahertz. We interpret these properties as being due to changes in the parallel component of the magnetic field integrated along the line of sight, including reversing direction of the field. This could result from propagation through a turbulent magnetized screen of plasma, located 10-5 to [Formula: see text] parsecs from the FRB source. This is consistent with the bursts passing through the stellar wind of a binary companion of the FRB source.