Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38124350

RESUMEN

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Fucosa/metabolismo , Plantones/metabolismo , Azúcares/metabolismo
2.
Plant Cell ; 35(5): 1318-1333, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36739885

RESUMEN

The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/metabolismo , Azúcares/metabolismo , Proteómica
3.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36660928

RESUMEN

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
4.
PLoS Pathog ; 19(2): e1011189, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812247

RESUMEN

Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Salmonella , Proteína de Unión al GTP cdc42 , Humanos , Acetilación , Carcinogénesis , Proteína de Unión al GTP cdc42/metabolismo , Transformación Celular Neoplásica , Quinasas p21 Activadas/metabolismo , Transducción de Señal
5.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37789674

RESUMEN

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/metabolismo , Proteínas Virales/metabolismo , Hepatitis C/metabolismo , Mitocondrias/metabolismo , Antivirales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414246

RESUMEN

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Asunto(s)
Cartílago Articular , Condrocitos , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Vía de Señalización Hippo , Osteoartritis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/etiología , Osteoartritis/patología , Osteoartritis/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Genomics ; 116(5): 110890, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909906

RESUMEN

Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.

8.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454325

RESUMEN

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Asunto(s)
Cabras , Microbiota , Animales , Cabras/metabolismo , Transcriptoma , Rumen/metabolismo , Microbiota/genética , Adaptación Psicológica
9.
Mol Cancer ; 23(1): 82, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664722

RESUMEN

Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-ß1, the principal form of exosomal TGF-ß1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-ß signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-ß1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-ß1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-ß1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.


Asunto(s)
Exosomas , Neoplasias Pulmonares , Factor de Crecimiento Transformador beta1 , Neoplasias de la Mama Triple Negativas , Exosomas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Factor de Crecimiento Transformador beta1/metabolismo , Acetilación , Animales , Femenino , Ratones , Línea Celular Tumoral , Microambiente Tumoral
10.
J Hepatol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960374

RESUMEN

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

11.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38740024

RESUMEN

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN , Mucina-1 , Estrés Oxidativo , Humanos , Mucina-1/metabolismo , ADN/metabolismo , ADN/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Peróxido de Hidrógeno/metabolismo
12.
Am J Pathol ; 193(7): 913-926, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088455

RESUMEN

Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with ßAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.


Asunto(s)
Diabetes Mellitus Experimental , Síndromes de Ojo Seco , Hiperglucemia , Laceraciones , Aparato Lagrimal , Ratones , Animales , Aparato Lagrimal/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Norepinefrina , Lágrimas , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/patología , Hiperglucemia/complicaciones , Hiperglucemia/patología , Laceraciones/patología , Receptores Adrenérgicos
13.
Plant Cell Environ ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884345

RESUMEN

Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.

14.
Biomacromolecules ; 25(6): 3651-3660, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38785044

RESUMEN

The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.


Asunto(s)
Hidrogeles , Microesferas , Albúmina Sérica Bovina , Dispositivos Electrónicos Vestibles , Albúmina Sérica Bovina/química , Hidrogeles/química , Humanos , Capacidad Eléctrica , Animales , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Bovinos
15.
Eur Spine J ; 33(3): 1230-1244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286908

RESUMEN

PURPOSE: This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS: The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS: As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS: When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Masculino , Femenino , Humanos , Imagen de Difusión Tensora/métodos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/patología , Imagen de Difusión por Resonancia Magnética , Constricción Patológica , Vértebras Cervicales/patología , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Espondilosis/patología
16.
PLoS Genet ; 17(5): e1009540, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989283

RESUMEN

Sugar, light, and hormones are major signals regulating plant growth and development, however, the interactions among these signals are not fully understood at the molecular level. Recent studies showed that sugar promotes hypocotyl elongation by activating the brassinosteroid (BR) signaling pathway after shifting Arabidopsis seedlings from light to extended darkness. Here, we show that sugar inhibits BR signaling in Arabidopsis seedlings grown under light. BR induction of hypocotyl elongation in seedlings grown under light is inhibited by increasing concentration of sucrose. The sugar inhibition of BR response is correlated with decreased effect of BR on the dephosphorylation of BZR1, the master transcription factor of the BR signaling pathway. This sugar effect is independent of the sugar sensors Hexokinase 1 (HXK1) and Target of Rapamycin (TOR), but requires the GSK3-like kinase Brassinosteroid-Insensitive 2 (BIN2), which is stabilized by sugar. Our study uncovers an inhibitory effect of sugar on BR signaling in plants grown under light, in contrast to its promotive effect in the dark. Such light-dependent sugar-BR crosstalk apparently contributes to optimal growth responses to photosynthate availability according to light-dark conditions.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Sacarosa/farmacología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Oscuridad , Hexoquinasa/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Luz , Fosfatidilinositol 3-Quinasas , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sacarosa/metabolismo
17.
Nano Lett ; 23(5): 1820-1829, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790360

RESUMEN

Multiplexed profiling of RNAs aids in a comprehensive understanding of multiparameter-defined cellular processes and pathological states. We herein present a mass nanotags-enabled interfacial assembly system (MNTs-AS) with parallel amplification motors for simultaneous assaying of multiple RNAs in biosystems by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Four kinds of MNTs encoding corresponding RNA can be cyclically assembled on magnetic beads by target-triggered catalytic hairpin assembly (CHA) machineries on nanointerfaces, generating multiplexed and amplified characteristic ion signals assigned to target RNAs upon MALDI MS interrogation. By virtue of high sensitivity and multiplexing capability, the MNTs-AS-based MS assay allows precision subtyping of diverse breast cancer cells and their exosomes by multiplexed profiling of miRNA-21, miRNA-373, miRNA-155, and manganese superoxide dismutase mRNA via a single MS inquiry. This method provides a promising tool for unraveling multiple RNA-involved biological events in fundamental research and distinguishing different cancer subtypes in clinical practice.


Asunto(s)
MicroARNs , ARN Mensajero , MicroARNs/genética
18.
Nano Lett ; 23(17): 7767-7774, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37487140

RESUMEN

The deep space's coldness (∼4 K) provides a ubiquitous and inexhaustible thermodynamic resource to suppress the cooling energy consumption. However, it is nontrivial to achieve subambient radiative cooling during daytime under strong direct sunlight, which requires rational and delicate photonic design for simultaneous high solar reflectivity (>94%) and thermal emissivity. A great challenge arises when trying to meet such strict photonic microstructure requirements while maintaining manufacturing scalability. Herein, we demonstrate a rapid, low-cost, template-free roll-to-roll method to fabricate spike microstructured photonic nanocomposite coatings with Al2O3 and TiO2 nanoparticles embedded that possess 96.0% of solar reflectivity and 97.0% of thermal emissivity. When facing direct sunlight in the spring of Chicago (average 699 W/m2 solar intensity), the coatings show a radiative cooling power of 39.1 W/m2. Combined with the coatings' superhydrophobic and contamination resistance merits, the potential 14.4% cooling energy-saving capability is numerically demonstrated across the United States.

19.
BMC Oral Health ; 24(1): 730, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918777

RESUMEN

BACKGROUND: Streptococcus mutans (S. mutans) is an important pathogenic bacterium that causes dental caries, while Streptococcus gordonii (S. gordonii) is a non-cariogenic bacterium that inhibits the growth of S. mutans. The SepM protein can promote the inhibitory ability of S. mutans against S. gordonii by cleaving CSP-21 and activating the ComDE two-component system. This study was designed to explore sepM mutation in S. mutans clinical isolates and related function in the regulation of interactions with S. gordonii. METHODS: The S. mutans clinical strains that can inhibit the growth of S. gordonii constitute the inhibitory group. 286 C-serotype S. mutans strains were categorized into S. gordonii inhibitory (n = 114) and non-inhibitory bacteria (n = 172). We detected sanger sequencing of sepM gene, the expression levels of related genes and proteins in clinical isolates, obtained prokaryotic expression and purification of mutated proteins, and analyzed the effect of the target mutations on the binding between SepM and CSP-21. RESULTS: We found that C482T, G533A, and G661A missense mutations were presented at significantly higher frequency in the inhibitory group relative to the non-inhibitory group. There was no significant difference in the expression of the sepM gene between selected clinical isolates harboring the G533A mutation and the control group. The expression levels of SepM, phosphorylated ComD, and ComE in the mutation group were significantly higher than those in the control group. SepM_control and SepM_D221N (G661A at the gene level) were found to contain two residues close to the active center while SepM_G178D (G533A at the gene level) contained three residues close to the active center. At 25 °C and a pH of 5.5, SepM_D221N (G661A) exhibited higher affinity for CSP-21 (KD = 8.25 µM) than did the SepM control (KD = 33.1 µM), and at 25 °C and a pH of 7.5, SepM_G178D (G533A) exhibited higher affinity (KD = 3.02 µM) than the SepM control (KD = 15.9 µM). It means that it is pH dependent. CONCLUSIONS: Our data suggest that increased cleavage of CSP-21 by the the mutant SepM may be a reason for the higher inhibitory effect of S. mutans on S. gordonii .


Asunto(s)
Proteínas Bacterianas , Streptococcus gordonii , Streptococcus mutans , Streptococcus mutans/genética , Proteínas Bacterianas/genética , Streptococcus gordonii/genética , Humanos , Mutación , Mutación Missense , Caries Dental/microbiología
20.
Angew Chem Int Ed Engl ; 63(4): e202313446, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38038595

RESUMEN

Encoded nanostructures afford an ideal platform carrying multi-channel signal components for multiplexed assay and information security. However, with the demand on exclusivity and reproducibility of coding signals, precise control on the structure and composition of nanomaterials featuring fully distinguishable signals remains challenging. By using the multiplexing capability of mass spectrometry (MS) and spatial addressability of DNA origami nanostructures, we herein propose a quality control methodology for constructing mass-encoded nanodevices (namely MNTs-TDOFs) in the scaffold of compartmented tetrahedral DNA origami frames (TDOFs), in which the arrangement and stoichiometry of four types of mass nanotags (MNTs) can be finely regulated and customized to generate characteristic MS patterns. The programmability of combinatorial MNTs and orthogonality of individual compartments allows further evolution of MNTs-TDOFs to static tagging agents and dynamic nanoprobes for labeling and sensing of multiple targets. More importantly, structure control at single TDOF level ensures the constancy of prescribed MS outputs, by which a high-capacity coding system was established for secure information encryption and decryption. In addition to the multiplexed outputs in parallel, the nanodevices could also map logic circuits with interconnected complexity and logic events of c-Met recognition and dimerization on cell surface for signaling regulation by MS interrogation.


Asunto(s)
ADN , Nanoestructuras , Reproducibilidad de los Resultados , ADN/química , Nanoestructuras/química , Lógica , Nanotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA