RESUMEN
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Asunto(s)
Alimentación Animal , Bidens , Microbioma Gastrointestinal , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Tilapia/genética , Tilapia/metabolismo , Bidens/metabolismo , Bidens/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Hígado/metabolismoRESUMEN
PSA is a type of proto-oncogene that is specifically and highly expressed in embryonic and prostate cancer cells, but not expressed in normal prostate tissue cells. The specific expression of prostate-specific antigen (PSA) is found to be related with the conditional transcriptional regulation of its promoter. Clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-KRAB is a newly developed transcriptional regulatory system that inhibits gene expression by interupting the DNA transcription process. Induction of CRISPR-dCas9-KRAB expression through the PSA promoter may help feedback inhibition of cellular PSA gene expression via single guide RNA (sgRNA), thereby monitoring and suppressing the malignant state of tumor cells. In this study, we examined the transcriptional activity of the PSA promoter in different prostate cancer cells and normal prostate epithelial cells and determined that it is indeed a prostate cancer cell-specific promoter.Then we constructed the CRISPR-dCas9-KRAB system driven by the PSA promoter, which can inhibit PSA gene expression in the prostate cancer cells at the transcriptional level, and therefore supress the malignant growth and migration of prostate cancer cells and promote their apoptosis in vitro. This study provides a potentially effective anti-cancer strategy for gene therapy of prostate cancer.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias de la Próstata , Humanos , Masculino , Antígeno Prostático Específico/genética , Próstata , ARN Guía de Sistemas CRISPR-Cas , Retroalimentación , Neoplasias de la Próstata/genética , Sistemas CRISPR-Cas/genéticaRESUMEN
Oxidative stress strongly influences the pathophysiology of erectile dysfunction (ED). In this study, we used the oxidative balance score (OBS), a composite index, to measure the effects of oxidative stress triggered by diet and lifestyle factors. Here, we conducted a cross-sectional study to determine the statistical relationship between OBS and ED among adult males in the U.S. The data from 3318 participants in the National Health and Nutrition Examination Survey (NHANES) 2001-2004 were analyzed. Weighted logistic regression was used to correct for confounding factors and acquire nationwide representative estimates. Generalized additive modeling was used to explore the nonlinear relationship. We also supplemented subgroup and sensitivity analysis to examine the robustness of the main results. Multivariate logistic regression indicated a consistent negative linear association between OBS and ED across all participants [OR (95% CI) = 0.96 (0.94, 0.98)]. After categorizing OBS into tertiles, participants in the highest tertile had 43% lower odds of having ED than those in the lowest tertile [OR (95% CI) = 0.57 (0.37, 0.87)]. The generalized additive model also visualized the linear trend of this association. Furthermore, this linear relationship remained relatively consistent, regardless of whether subgroup or sensitivity analyses were performed. Our findings suggest that adopting a lifestyle and diet pattern that promotes favorable OBS may effectively protect against the development of ED, regardless of the underlying causes.
Asunto(s)
Disfunción Eréctil , Encuestas Nutricionales , Estrés Oxidativo , Humanos , Masculino , Disfunción Eréctil/epidemiología , Disfunción Eréctil/metabolismo , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Estudios Transversales , Estilo de Vida , Anciano , Factores de Riesgo , DietaRESUMEN
Purpose: To evaluate the association of Life's Essential 8 (LE8) and its subscales with male biochemical androgen deficiency (MBAD) and total testosterone based on the data from the national health and nutrition examination survey (NHANES) database. Methods: Data of males aged 20 years or older from NHANES of 2013-2016 were extracted. LE8 score was calculated based on American Heart Association definitions. Total testosterone (TT) values were measured in NHANES using precise isotope dilution liquid chromatography. MBAD was defined as serum TT of <300 ng/dL. Univariate and multivariable analyses were conducted. Propensity score matching (PSM) and weighted regression after matching were added as sensitivity analyses. The generalized additive model, smooth curve fitting, and the recursive algorithm were used to determine the potential inflection points. Piecewise regression models with log-likelihood ratio test were used to quantify nonlinear effects. Results: A total of 3094 participants who were males and aged 20 years or above were included. Out of them, 805 males were diagnosed with MBAD. After adjusting the confounders in the multivariable model, LE8 was independently associated with MBAD (OR 0.96, P < 0.001) and TT (ß 2.7, P < 0.001). The association remained robust even after PSM. The non-linear relationship of LE8 behaviors score with MBAD and TT was revealed. Conclusion: LE8 was an independent protective factor of MBAD and a feasible approach to promote male endocrine sexual function.
Asunto(s)
Encuestas Nutricionales , Testosterona , Humanos , Masculino , Adulto , Testosterona/sangre , Testosterona/deficiencia , Persona de Mediana Edad , Adulto Joven , Andrógenos/sangre , Andrógenos/deficiencia , Anciano , Hipogonadismo/epidemiología , Hipogonadismo/sangreRESUMEN
OBJECTIVE: To evaluate the effects of down-regulated expression of transient receptor potential canonical (TRPC1) by RNA interference (RNAi) on proliferation and invasiveness of human lung adenocarcinoma cell A549 in vitro. METHODS: A549 cells were transfected with chemically synthesized small interfering RNA (siRNA) targeting TRPC1 gene. The mRNA and protein of TRPC1 were analyzed by real-time polymerase chain reaction (PCR) and Western blot respectively. To assess malignant phenotypes of transfected A549 cells, the assays of methyl thiazolyl tetrazolium (MTT), cell cycle and cell invasion were performed. RESULTS: siRNA targeting TRPC1 dramatically suppressed TRPC1 expression. In vitro study showed that siRNA targeting TRPC1 significantly inhibited cell proliferation of A549 cells with an inhibitory rate of 34.7% while negative control siRNA had no effect on cell proliferation. Flow cytometric analysis showed that siRNA targeting TRPC1 increased the number of cells in G0/G1 phase (P < 0.05) . Moreover, a knockdown of TRPC1 expression effectively inhibited cell invasiveness in A549 cells (P < 0.05) . CONCLUSION: Knocking down TRPC1 expression can inhibit proliferation and invasiveness of A549 cells in vitro.
Asunto(s)
Adenocarcinoma/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , ARN Interferente Pequeño/genética , Canales Catiónicos TRPC/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Interferencia de ARN , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , TransfecciónRESUMEN
Lake microbiomes are essential indicators of lake health and are strongly influenced by allochthonous microbial communities from various sources within the watershed. However, quantifying the contributions of multiple inputs to lake microbiomes is challenging because of the complex nature of riverâlake systems and the presence of many untraceable sources. Here, Jianhu Lakeââa geographically simple and closed plateau lake in southwestern China, was surveyed to disentangle the contributions of five distinct sources (three input rivers that receive town sewage, stormwater runoff, and creek spring water, as well as two nonpoint sources, duck ponds and dry farmland) to the overall lake microbiomes. We found that feces-loading sources, namely town sewage and duck aquaculture, accounted for 48.7% of the total variations in lake microbiomes. In contrast, the combined contribution of the remaining three sources amounted to 13.21%, despite these less-influential sources (e.g., stormwater runoff) may introduce an even larger volume of allochthonous materials into the lake. In addition, approximately 38.1% of the variations in the lake microbiomes were attributed to unknown sources. Sewage effluents also caused a significant loss of lake microbial diversity, and there was a tendency for large-scale microbial homogeneity in lake sediments that resembled those from duck ponds. We then used a targeted approach to track host-specific fecal pollution, and found that human feces were the primary source, followed by ruminant and chicken/duck feces, all of which can be successfully traced back to the feces-loading sources. In our further modelling of sediment transport from three rivers into the whole lake, we observed a significant relationship between sediment accumulation and adsorbed microorganisms only for the sewage-receiving river. Together, lines of evidence indicate that both point and nonpoint fecal-related anthropogenic sources possess discriminatory power for shaping microbial geographic patterns of the lake, posing threats to the survival of local indigenous lake microbiomes.
RESUMEN
In China, the main sugarcane (Saccharum spp.) planting areas can be found in the low-latitude plateau (21° N-25° N, 97° E-106° E), which has most of the natural ecological types. However, there is limited information on the climate conditions of this region and their influence on sugarcane yield and sucrose content. Monthly variations in the main climate factors, namely, average air temperature (AAT), average relative humidity (ARH), average rainfall amount (ARA), and average sunshine duration (ASD), from 2000 to 2019 and sugarcane yield and sucrose content of 26 major sugarcane-producing areas from 2001/2002 to 2018/2019 were collected from the low-latitude plateau in Yunnan for studying the impact of climate variations on sugarcane yield and sucrose content. The results showed that AAT in the mid-growth season had a significant positive correlation with sucrose content (p < 0.05), and AAT in the late-growth season had a very significant positive correlation with sucrose content (p < 0.01). ARH in the mid-growth season had a significant positive correlation with sugarcane yield (p < 0.05). ARA in the early-growth season showed a significant positive correlation with sugarcane yield (p < 0.05). ASD in the late-growth season had a significant positive correlation with sugarcane yield (p < 0.05) and sucrose content (p < 0.01). The rainy and humid sugarcane areas were characterized by high ARA and ARH during the entire growth period, low AAT and ASD in the mid-growth season, and low AAT in the late-growth season, contributing to a high sugarcane yield, but not a high sucrose content. The low temperature and sunshine semi-humid sugarcane areas were characterized by the lowest AAT in the early and middle stages of sugarcane growth, less ASD in the early and middle stages, and less ARA in the early and late stages, which are unfavorable for sugarcane yield and sucrose content. The high temperature and humidity sugarcane areas were characterized by higher AAT and ARA, and moderate ASD during the entire growth period, resulting in good sugarcane growth potential and contributing to the sugarcane yield and sucrose content. The semi-humid and multi-sunshine sugarcane areas were characterized by the lowest ARH in the entire growth period, the lowest ARA in the middle and late seasons, and the longest ASD, contributing to an increase in sucrose content. The humid and sunny areas were characterized by the longest ASD and high ARH in the early and late seasons of sugarcane growth and moderate AAT and ARA during the entire growth season, which are beneficial for high sugarcane yield and sucrose content. Overall, these findings suggest that the sugarcane variety layout should be based on the climate type (of which there are five in the plateau), and corresponding cultivation practices should be used to compensate for the climatic conditions in various growth stages.
RESUMEN
Verticillium wilt is one of the most critical cotton diseases, which is widely distributed in cotton-producing countries. However, the conventional method of verticillium wilt investigation is still manual, which has the disadvantages of subjectivity and low efficiency. In this research, an intelligent vision-based system was proposed to dynamically observe cotton verticillium wilt with high accuracy and high throughput. Firstly, a 3-coordinate motion platform was designed with the movement range 6,100 mm × 950 mm × 500 mm, and a specific control unit was adopted to achieve accurate movement and automatic imaging. Secondly, the verticillium wilt recognition was established based on 6 deep learning models, in which the VarifocalNet (VFNet) model had the best performance with a mean average precision (mAP) of 0.932. Meanwhile, deformable convolution, deformable region of interest pooling, and soft non-maximum suppression optimization methods were adopted to improve VFNet, and the mAP of the VFNet-Improved model improved by 1.8%. The precision-recall curves showed that VFNet-Improved was superior to VFNet for each category and had a better improvement effect on the ill leaf category than fine leaf. The regression results showed that the system measurement based on VFNet-Improved achieved high consistency with manual measurements. Finally, the user software was designed based on VFNet-Improved, and the dynamic observation results proved that this system was able to accurately investigate cotton verticillium wilt and quantify the prevalence rate of different resistant varieties. In conclusion, this study has demonstrated a novel intelligent system for the dynamic observation of cotton verticillium wilt on the seedbed, which provides a feasible and effective tool for cotton breeding and disease resistance research.
RESUMEN
To explore the effect of soil fungal community under different planting years in Dendrocalamus brandisii, the soil samples from D. brandisii with different planting years (5, 10, 20, and 40 a) were taken as the research object. The soil fungal community structure, diversity, and its functional groups of different planting years were analyzed using high-throughput sequencing technology and the FUNGuild fungal function prediction tool, and the main soil environmental factors influencing the variations in soil fungal community were examined. The results showed that the dominant fungal communities at the phylum level were Ascomycota, Basidiomycota, Mortierellomycota, and Mucoromycota. The relative abundance of Mortierellomycota decreased and then increased with the increase in planting years, and there was a significant difference among different planting years (P<0.05). The dominant fungal communities at the class level were Sordariomycetes, Agaricomycetes, Eurotiomycetes, and Mortierellomycetes. The relative abundance of Sordariomycetes and Dothideomycetes decreased and then increased with the increase in planting years, and there were significant differences among different planting years (P<0.01). The Richness index and Shannon index of soil fungi increased and then decreased with the increase in planting years, and the Richness index and Shannon index in 10 a were significantly higher than those of other planting years. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) showed that there were significant differences in soil fungal community structure with different planting years. The functional prediction with FUNGuild showed that the main functional trophic types of soil fungi in D. brandisii were pathotroph, symbiotroph, and saprotroph, and the most dominant functional group was endophyte-litter saprotroph-soil saprotroph-undefined saprotroph. The relative abundance of endophytes gradually increased with the increase in planting years. Correlation analysis showed that pH, total potassium (TK), and nitrate nitrogen (NO-3-N) were the main soil environmental factors affecting the change in fungal community. In summary, the planting year of D. brandisii has changed soil environmental factors and has thus changed the structure, diversity, and functional groups of soil fungal communities.
Asunto(s)
Micobioma , Endófitos , Secuenciación de Nucleótidos de Alto Rendimiento , Nitratos , SueloRESUMEN
Cereals are the main food for mankind. The grain shape extraction and filled/unfilled grain recognition are meaningful for crop breeding and genetic analysis. The conventional measuring method is mainly manual, which is inefficient, labor-intensive and subjective. Therefore, a novel method was proposed to extract the phenotypic traits of cereal grains based on point clouds. First, a structured light scanner was used to obtain the grains point cloud data. Then, the single grain segmentation was accomplished by image preprocessing, plane fitting, region growth clustering. The length, width, thickness, surface area and volume was calculated by the specified analysis algorithms for grain point cloud. To demonstrate this method, experimental materials included rice, wheat and corn were tested. Compared with manual measurement results, the average measurement error of grain length, width and thickness was 2.07%, 0.97%, 1.13%, and the average measurement efficiency was about 9.6 s per grain. In addition, the grain identification model was conducted with 25 grain phenotypic traits, using 6 machine learning methods. The results showed that the best accuracy for filled/unfilled grain classification was 90.184%.The best accuracy for indica and japonica identification was 99.950%, while for different varieties identification was only 47.252%. Therefore, this method was proved to be an efficient and effective way for crop research.
Asunto(s)
Nube Computacional , Grano Comestible/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , FitomejoramientoRESUMEN
The wheat grain three-dimensional (3D) phenotypic characters are of great significance for final yield and variety breeding, and the ventral sulcus traits are the important factors to the wheat flour yield. The wheat grain trait measurements are necessary; however, the traditional measurement method is still manual, which is inefficient, subjective, and labor intensive; moreover, the ventral sulcus traits can only be obtained by destructive measurement. In this paper, an intelligent analysis method based on the structured light imaging has been proposed to extract the 3D wheat grain phenotypes and ventral sulcus traits. First, the 3D point cloud data of wheat grain were obtained by the structured light scanner, and then, the specified point cloud processing algorithms including single grain segmentation and ventral sulcus location have been designed; finally, 28 wheat grain 3D phenotypic characters and 4 ventral sulcus traits have been extracted. To evaluate the best experimental conditions, three-level orthogonal experiments, which include rotation angle, scanning angle, and stage color factors, were carried out on 125 grains of 5 wheat varieties, and the results demonstrated that optimum conditions of rotation angle, scanning angle, and stage color were 30°, 37°, black color individually. Additionally, the results also proved that the mean absolute percentage errors (MAPEs) of wheat grain length, width, thickness, and ventral sulcus depth were 1.83, 1.86, 2.19, and 4.81%. Moreover, the 500 wheat grains of five varieties were used to construct and validate the wheat grain weight model by 32 phenotypic traits, and the cross-validation results showed that the R 2 of the models ranged from 0.77 to 0.83. Finally, the wheat grain phenotype extraction and grain weight prediction were integrated into the specialized software. Therefore, this method was demonstrated to be an efficient and effective way for wheat breeding research.
RESUMEN
High-throughput phenotyping of yield-related traits is meaningful and necessary for rice breeding and genetic study. The conventional method for rice yield-related trait evaluation faces the problems of rice threshing difficulties, measurement process complexity, and low efficiency. To solve these problems, a novel intelligent system, which includes an integrated threshing unit, grain conveyor-imaging units, threshed panicle conveyor-imaging unit, and specialized image analysis software has been proposed to achieve rice yield trait evaluation with high throughput and high accuracy. To improve the threshed panicle detection accuracy, the Region of Interest Align, Convolution Batch normalization activation with Leaky Relu module, Squeeze-and-Excitation unit, and optimal anchor size have been adopted to optimize the Faster-RCNN architecture, termed 'TPanicle-RCNN,' and the new model achieved F1 score 0.929 with an increase of 0.044, which was robust to indica and japonica varieties. Additionally, AI cloud computing was adopted, which dramatically reduced the system cost and improved flexibility. To evaluate the system accuracy and efficiency, 504 panicle samples were tested, and the total spikelet measurement error decreased from 11.44 to 2.99% with threshed panicle compensation. The average measuring efficiency was approximately 40 s per sample, which was approximately twenty times more efficient than manual measurement. In this study, an automatic and intelligent system for rice yield-related trait evaluation was developed, which would provide an efficient and reliable tool for rice breeding and genetic research.
RESUMEN
Soil microorganism was the engine of the migration and transformation of biological elements in the soil-plant system of wetland ecosystems. Exploring the relationship between plant community, soil properties, and spatial structure with soil microorganisms is the key to maintain the health and stability of wetlands. In order to examine the effects of plant community, soil properties, and spatial structure on the bacterial community in wetlands, we used two-way indicator species analysis (TWINSPAN) to classify plant communities from 35 samples collected in Bitahai Wetland. We measured microbial community composition at the surface soil of the samples using high-throughput sequencing technology, and analyzed the relationship among plant community, soil pro-perties and spatial structure with bacterial community. The results showed that plant communities could classified into three different types by TWINSPAN. The physiognomy and structure of plant communities in same community type were relatively consistent. We found that quantitative classification had good applicability in vegetation classification of plateau wetland ecosystem. Acidobacteriota (21.0%), Chloroflexi (15.5%), Proteobacteria (15.3%) and Bacteroidetes (10.1%) had higher population densities (≥10%) in Bitahai Wetland. Analysis of similarities (ANOSIM) showed that different plant community types differed significantly in bacterial community composition, suggesting that plant communities could affect bacterial community. Cano-nical correspondence analysis (CCA) results showed that plant diversity, soil water content (SWC), pH, iron (Fe) and spatial structure were the dominated factors that significantly affecting bacterial community. The variance partitioning analysis (VPA) results showed that bacterial community was affected by single environment factors and their interactions. Our results highlighted that bacterial community is shaped by plant community, soil properties and spatial structure, with their effects being indivisible.
Asunto(s)
Suelo , Humedales , Bacterias , China , Microbiología del SueloRESUMEN
Long-chain non-coding RNA (LncRNA) has been found to play an important role in the regulation of the occurrence and progression of renal cell carcinoma (RCC). In this study, we demonstrated that LncRNA NEAT1 expression and m6A methylation level was decreased in RCC tissues. Further, the downregulated expression level of LncRNA NEAT1 was associated with poor prognosis for RCC patients. Then we used CRIPSR/dCas13b-METTL3 to methylate LncRNA NEAT1 in RCC cells. The results showed that the expression level of LncRNA NEAT1 was upregulated after methylated by dCas13b-METTL3 in RCC cells. And the proliferation and migration ability of RCC cells was decreased after methylated LncRNA NEAT1. Finally, we examined the effect of LncRNA NEAT1 hypermethylation on the transcriptome. We found differentially expressed genes in RCC cells were associated with "cGMP-PKG signaling pathway", "Cell adhesion molecules" and "Pathways in cancer". In conclusion, CRISPR/Cas13b-METTL3 targeting LncRNA NEAT1 m6A methylation activates LncRNA NEAT1 expression and provides a new target for treatment of RCC.
RESUMEN
OBJECTIVES: Recent advances in patient-derived cancer organoids have opened a new avenue for personalised medicine. We aimed to establish an in vitro technological platform to evaluate chimeric antigen receptor (CAR)-T cell-mediated cytotoxicity against bladder cancer. METHODS: Patient-derived bladder cancer organoids (BCOs) were derived using classic medium containing R-spondin 1 and noggin. The features of BCOs were characterised via H&E, whole-exome sequencing and immunofluorescence of specific markers. Surface antigen expression profiles of the recently identified CAR-recognisable targets were determined with a panel of antibodies via immunohistochemistry. A co-cultivation system consisting of BCOs and engineered T cells targeting a specific antigen was utilised to test its efficacy to model immunotherapy by cytotoxic assays and ELISA. RESULTS: Bladder cancer organoid lines of basal and luminal subtypes were established. The histopathological morphology, genomic alteration, and specific marker expression profiles showed that the BCO lines retained the characteristics of the original tumors. Among all tested CAR-recognisable antigens in other solid tumors, MUC1 was simultaneously expressed in organoids and parental tumor tissues. Given the surface antigen profiles, second-generation CAR-T cells targeting MUC1 were prepared for modelling in vitro immunotherapy responses in BCOs. Specific immune cytotoxicity occurred only in the MUC1+ organoids but not in the MUC1- organoids or control CAR-T cells. CONCLUSION: Patient-derived BCOs recapitulate the heterogeneity and key features of parental cancer tissues, and these BCOs could be useful for preclinical testing of CAR-T cells in vitro.
RESUMEN
Dumasia taxonomy and classification have long been problematic. Species within this genus have few morphological differences and plants without flowers or fruits are difficult to accurately identify. In this study, we evaluated the ability of six DNA barcoding sequences, one nuclear (ITS) and five chloroplast regions (trnH-psbA, matK, rbcL, trnL-trnF, psbB-psbF), to efficiently identify Dumasia species. Most single markers or their combinations identify obvious barcoding gaps between intraspecific and interspecific genetic variation. Most combined analyses including ITS showed good species resolution and identification efficiency. We therefore suggest that ITS alone or a combination of ITS with any cpDNA marker are most suitable for DNA barcoding of Dumasia. The phylogenetic analyses clearly indicated that Dumasia yunnanensis is not monophyletic and is separated as two independent branches, which may result from cryptic differentiation. Our results demonstrate that molecular data can deepen the comprehension of taxonomy of Dumasia and provide an efficient approach for identification of the species.
RESUMEN
The current study is to investigate the expression pattern and biological function of long non-coding RNA Focally gastric cancer-associated transcript3 (GACAT3) in bladder cancer. Real-time quantitative qPCR was used to detect the expression level of GACAT-3 in tumor tissues and paired normal tissues. Human bladder cancer T24 and 5637 cell lines were transiently transfected with specific CRISPR-Cas13 or negative control CRISPR-Cas13. Cell migration, proliferation, and apoptosis were measured by using wound healing assay CCK-8 assay and Caspase-3 ELISA assay, respectively. The expression changes of p21, Bax, and E-cadherin after knockdown of GACAT3 were detected by using Western blot. The results demonstrated that GACAT3 was up-regulated in bladder cancer tissues than that in the paired normal tissues. Inhibition of cell proliferation, increased apoptosis, and decreased motility were observed in T24 and 5637 cell lines transfected by CRISPR-Cas13 targeting GACAT3. Downregulation of GACAT3 increased p21, Bax, and E-cadherin expression and silencing these genes could eliminate the phenotypic changes induced by knockdown of GACAT3. A ceRNA mechanism for GACAT3 was also revealed. By using CRISPR-Cas13 biotechnology, we suggested that GACAT3 may be a novel target for diagnosis and treatment of bladder cancer.
RESUMEN
Adenosquamous carcinoma (ASC) and sarcomatoid carcinoma (SC) of the prostate are rare, but highly aggressive tumors. The occurrence of mixed carcinomas in the prostate is even more rarely reported. The present study reports the case of a 62-year-old male who was diagnosed with prostatic adenocarcinoma accompanied by multiple bone metastases, as shown by a needle biopsy and skeletal computed tomography scan. The patient was treated with hormonal therapy, but thereafter, specimens from a transurethral resection of the prostate (TURP) were found to be composed of three histologically distinct elements: ASC, SC and adenocarcinoma. The level of p53 was evaluated by immunohistochemistry in detail, and it was found that this was significantly increased in the TURP samples compared with the needle biopsy samples. The abnormal level of p53 was likely associated with the prognosis of the patient; the patient succumbed to prostate carcinoma two months after the confirmation of the diagnosis.
RESUMEN
BACKGROUND: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing. METHODOLOGY/PRINCIPAL FINDINGS: We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b â¼ 429, hsa-miR-200c â¼ 141 and hsa-miR-17 â¼ 92 clusters were significantly upregulated. The hsa-miR-143 â¼ 145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p < 0.001 for each miRNA). CONCLUSIONS/SIGNIFICANCE: To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.
Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Análisis por Conglomerados , Regulación hacia Abajo/genética , Humanos , MicroARNs/biosíntesis , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/genéticaRESUMEN
Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.