Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(6): 699-709, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212578

RESUMEN

Ferroptosis is iron-dependent oxidative cell death. Labile iron and polyunsaturated fatty acid (PUFA)-containing lipids are two critical factors for ferroptosis execution. Many processes regulating iron homeostasis and lipid synthesis are critically involved in ferroptosis. However, it remains unclear whether biological processes other than iron homeostasis and lipid synthesis are associated with ferroptosis. Using kinase inhibitor library screening, we discovered a small molecule named CGI1746 that potently blocks ferroptosis. Further studies demonstrate that CGI1746 acts through sigma-1 receptor (σ1R), a chaperone primarily located at mitochondria-associated membranes (MAMs), to inhibit ferroptosis. Suppression of σ1R protects mice from cisplatin-induced acute kidney injury hallmarked by ferroptosis. Mechanistically, CGI1746 treatment or genetic disruption of MAMs leads to defective Ca2+ transfer, mitochondrial reactive oxygen species (ROS) production and PUFA-containing triacylglycerol accumulation. Therefore, we propose a critical role for MAMs in ferroptosis execution.


Asunto(s)
Ferroptosis , Especies Reactivas de Oxígeno , Receptores sigma , Receptor Sigma-1 , Ferroptosis/efectos de los fármacos , Receptores sigma/metabolismo , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Ratones Endogámicos C57BL , Membranas Asociadas a Mitocondrias
2.
Hepatology ; 79(3): 606-623, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733267

RESUMEN

BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Ratones , beta Catenina/metabolismo , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Vía de Señalización Wnt/fisiología , Células Estrelladas Hepáticas/metabolismo
3.
Small ; 20(15): e2307357, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38012538

RESUMEN

Hydrogen reduction reaction (HER) and corrosion limit the long-life cycle of zinc-ion batteries. However, hydrophilic separators are unable to prevent direct contact between water and electrodes, and hydrophobic separators have difficulty in transporting electrolytes. In this work, an inorganic oxide-based "hydrophobic-hydrophilic-hydrophobic" self-assembled separator system is proposed. The hydrophobic layer consists of a porous structure, which can isolate a large amount of free water to avoid HER and corrosion reactions, and can transport electrolyte by binding water. The middle hydrophilic layer acts as a storage layer consisting of the GF separator, storing large amounts of electrolyte for proper circulation. By using this structure separator, Zn||Zn symmetric cell achieve 2200 h stable cycle life at 5 mA cm-2 and 1mAh cm-2 and still shows a long life of 1800 h at 10 mA cm-2 and 1mAh cm-2. The assembled Zn||VO2 full cell displays high specific capacity and excellent long-term durability of 60.4% capacity retention after 1000 cycles at 2C. The assembled Zn||VO2 pouch full cell displays high specific capacity of 172.5mAh g-1 after 40 cycles at 0.5C. Changing the inorganic oxide materials, the hydrophobic-hydrophilic-hydrophobic structure of the separators still has excellent performance. This work provides a new idea for the engineering of water-based battery separators.

4.
Opt Express ; 32(9): 15507-15526, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859199

RESUMEN

Deterministic computer-controlled optical finishing is an essential approach for achieving high-quality optical surfaces. Its determinism and convergence rely heavily on precise and smooth motion control to guide the machine tool over an optical surface to correct residual errors. One widely supported and smooth motion control model is position-velocity-time (PVT), which employs piecewise cubic polynomials to describe positions. Our prior research introduced a PVT-based velocity scheduling method, demonstrating sub-nanometer level convergence in ion beam figuring (IBF) processes. However, three challenges remained. Firstly, this method relies on quadratic programming, resulting in computational intensiveness for dense tool paths. Secondly, the dynamics constraints and velocity and acceleration continuities are not comprehensively considered, limiting the full potential of PVT-based control. Thirdly, no compensation mechanism existed when dynamics constraints are exceeded. In this study, in response to these challenges, we proposed the Enhanced PVT (E-PVT) method, reducing the time complexity from O(n3) to O(n) while fully addressing dynamics constraints and continuities. A novel compensation method utilizing particle swarm optimization was proposed to address situations where dynamics constraints might be exceeded while maintaining the overall processing efficiency. Validation through simulation and experimentation confirmed the improved performance of E-PVT.

5.
Opt Lett ; 49(4): 919-922, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359216

RESUMEN

Multi-view microscopic fringe projection systems, which use high-resolution telecentric lenses and the Scheimpflug condition, face challenges in coinciding focal planes accurately, resulting in inconsistent measurements between views. In this Letter, we developed a sharpness evaluation function based on the total power of the line-spread function, which was subsequently used to generate a full-field sharpness distribution map. Then we employed the correlation between the sharpness map and orientation of the focal plane to precisely coincide the focal planes. Experimental results validate the proposed method and demonstrate its improved consistency in 3D reconstruction.

6.
Acta Pharmacol Sin ; 45(6): 1130-1141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195693

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.


Asunto(s)
Adenosina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , ARN/metabolismo , ARN/genética
7.
Appl Opt ; 63(10): 2528-2534, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568532

RESUMEN

Terahertz time-domain spectroscopy was first used to establish a correlation with the whole-rock iron (TFe) content in different depths of the Bayan Obo protolith. Compared with element content obtained by the traditional method of X-ray fluorescence spectroscopy (XRF), a similar tendency of the absorption coefficient and refractive index is presented. Furthermore, three machine learning algorithms, namely, partial least squares regression (PLSR), random forest (RF), and multi-layer perceptron (MLP), were used to develop a quantitative analytical model for TFe content of the protolith minerals. Among the three algorithms, MLP has the highest detection accuracy, with a model coefficient of determination R 2 reaching up to 0.945. These findings demonstrate that terahertz time-domain spectroscopy can be used to rapidly quantify the TFe elemental content of protolith, providing a method of detecting the content of mineral components.

8.
Appl Opt ; 63(16): 4251, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856600

RESUMEN

This publisher's note serves to correct errors in Appl. Opt.63, 2528 (2024)APOPAI0003-693510.1364/AO.517400.

9.
BMC Plant Biol ; 23(1): 190, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038118

RESUMEN

BACKGROUND: Waxy corn has a short growth cycle and high multiple cropping index. However, after being planted in early spring, late autumn and winter, it is susceptible to low temperature (LT), which reduces the emergence rate and yield. Therefore, it is important to analyze the response mechanism of waxy corn under LT stress. RESULTS: All phenotype indexes of waxy corn inbred lines N28 were significantly higher than waxy corn inbred lines N67 under LT. With the increase of LT stress time, all physiological indexes showed an upward trend in N28 and N67. Differentially expressed genes (DEGs) 16,017 and 14,435 were identified in N28 and N67 compared with nongerminated control under LT germination, respectively, and differential metabolites 127 and 93 were detected in N28 and N67, respectively. In addition, the expression level of some genes involved in plant hormones and mitogen activated protein kinase (MAPK) signaling pathways was significantly up-regulated in N28. Compared with N67, flavonoid metabolites were also significantly enriched in N28 under LT germination. CONCLUSION: Under LT stress, the inbred lines N28 was significantly higher than the inbred lines N67 in the phenotypic and physiological indices of cold resistance. Compared with N67, the expression levels of some genes involved in the plant hormones and MAPK pathways were significantly up-regulated in N28, and flavonoid metabolites were also significantly enriched in N28 under LT stress. These genes and metabolites may help N28 to improve cold resistance and may be as potential target genes for cold resistance breeding in waxy corn.


Asunto(s)
Germinación , Transcriptoma , Germinación/genética , Zea mays/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Temperatura , Semillas , Fitomejoramiento , Perfilación de la Expresión Génica , Metabolómica , Frío , Regulación de la Expresión Génica de las Plantas
10.
Opt Express ; 31(24): 39528-39545, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041272

RESUMEN

In microscopic fringe projection profilometry (MFPP), the traditional absolute phase retrieval method using composite frequency fringe has the shortcomings of low accuracy and poor robustness due to mutual crosstalk of harmonic from the different channels of frequency-division multiplexing. In this study, an absolute phase retrieval method that avoids the inter-channel crosstalk is proposed. By introducing guard bands to accommodate the frequency channels corresponding to the second harmonic that dominate the high order harmonics, the aliasing between the second harmonic and the fundamental is eliminated. Consequently, phase maps without crosstalk can be demodulated using appropriate phase-shifting algorithms. The proposed method is well-suited for high-precision three-dimensional shape measurement scenarios in many fields such as integrated circuit manufacturing process control and micro-electro-mechanical system quality inspection. The experiment results demonstrate that the anti-crosstalk method is effective and can realize three-dimensional reconstruction for discontinuous planar surface and spherical surface.

11.
Opt Express ; 31(15): 24230-24242, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475255

RESUMEN

The laser tracker, as a new large-scale measuring instrument of combining conventional measurement technology and modern control technology, has the advantages of intelligence, portability, large measurement space, high measurement accuracy and short detection period. However, the laser tracker has strict requirements on the moving speed of the spherically mounted retroreflector. This deficiency not only limits the application of the measuring instrument in the field of high-velocity measurement, but also greatly reduces the measurement efficiency. In this work, we analyze the factors that affect the tracking velocity of the laser tracker, and propose for the first time to use the beam expander device to improve the transverse tracking measurement velocity of the instrument. The experimental results show that the laser tracker miss distance can reach 2.25 mm. The transverse tracking velocity and acceleration can reach 4.34 m/s and 2.4 g, respectively. Additionally, the acousto-optic modulator is used to increase the frequency difference between the reference beam and the measuring beam, so that the value is greater than 19 MHz. The radial tracking measurement velocity can reach 6.2 m/s. The high-velocity laser interference tracker developed by this new method can be used in the field of large-scale space precision measurement such as nuclear power, medical treatment and rail transit.

12.
Respir Res ; 24(1): 73, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36899372

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease with high morbidity and mortality, especially in advanced patients. We aimed to develop multi-omics panels of biomarkers for the diagnosis and explore its molecular subtypes. METHODS: A total of 40 stable patients with advanced COPD and 40 controls were enrolled in the study. Proteomics and metabolomics techniques were applied to identify potential biomarkers. An additional 29 COPD and 31 controls were enrolled for validation of the obtained proteomic signatures. Information on demographic, clinical manifestation, and blood test were collected. The ROC analyses were carried out to evaluate the diagnostic performance, and experimentally validated the final biomarkers on mild-to-moderate COPD. Next, molecular subtyping was performed using proteomics data. RESULTS: Theophylline, palmitoylethanolamide, hypoxanthine, and cadherin 5 (CDH5) could effectively diagnose advanced COPD with high accuracy (auROC = 0.98, sensitivity of 0.94, and specificity of 0.95). The performance of the diagnostic panel was superior to that of other single/combined results and blood tests. Proteome based stratification of COPD revealed three subtypes (I-III) related to different clinical outcomes and molecular feature: simplex COPD, COPD co-existing with bronchiectasis, and COPD largely co-existing with metabolic syndrome, respectively. Two discriminant models were established using the auROC of 0.96 (Principal Component Analysis, PCA) and 0.95 (the combination of RRM1 + SUPV3L1 + KRT78) in differentiating COPD and COPD with co-morbidities. Theophylline and CDH5 were exclusively elevated in advanced COPD but not in its mild form. CONCLUSIONS: This integrative multi-omics analysis provides a more comprehensive understanding of the molecular landscape of advanced COPD, which may suggest molecular targets for specialized therapy.


Asunto(s)
Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Proteómica/métodos , Teofilina , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Metabolómica/métodos , Biomarcadores
13.
BMC Cancer ; 23(1): 1013, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864137

RESUMEN

BACKGROUND: Recent studies have shown that deficient mismatch repair (dMMR) rectal cancer may be related to treatment resistance, resulting in a worse prognosis than proficient MMR (pMMR) rectal cancer. The purpose of this study was to explore whether surgery plus other treatments (radiotherapy and chemotherapy) can bring more benefits to these patients than surgery alone. METHODS: A retrospective study of 168 patients with rectal adenocarcinoma who underwent total mesorectal excision was conducted using immunohistochemical methods to determine MMR status and a propensity score matching model to minimize potential confounding factors between subgroups of patients with different treatment regimens. Kaplan-Meier analysis, log-rank tests, and Cox regression models were used to assess overall survival (OS) and disease-free survival (DFS) in patient subgroups. RESULTS: Only 6.9% (n = 168) of patients in the total cohort had dMMR rectal adenocarcinoma, and the most common cause of dMMR was a PMS2 deletion (103, 61.3%). The median DFS of the surgery alone group was 45.7 months (IQR, 40.9 to 77.8), and the median DFS of the surgery plus other treatment group was 43.9 months (IQR, 14.2 to 80.1). The surgery alone group was superior to the surgery plus other treatment group (HR, 0.16; 95% CI, 0.07 to 0.38; p = 0.005). There was no significant difference in OS (45.8 (IQR, 41.0 to 79.8) vs. 45.9 (IQR, 38.5 to 80.3)) between the two groups (HR, 0.57; 95% CI, 0.23 to 1.40; p = 0.263). CONCLUSIONS: For patients with locally advanced dMMR rectal adenocarcinoma, compared with surgery alone, surgery plus other treatment options (radiotherapy and chemotherapy) do not grant long-term survival benefits but rather shorten DFS.


Asunto(s)
Adenocarcinoma , Neoplasias del Recto , Humanos , Estadificación de Neoplasias , Reparación de la Incompatibilidad de ADN , Estudios Retrospectivos , Pronóstico , Neoplasias del Recto/genética , Neoplasias del Recto/cirugía , Adenocarcinoma/genética , Adenocarcinoma/cirugía
14.
Cell Commun Signal ; 21(1): 47, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869331

RESUMEN

BACKGROUND: The most significant cause of treatment failure in chronic myeloid leukemia (CML) is a persistent population of minimal residual cells. Emerging evidences showed that methylation of SHP-1 contributed to Imatinib (IM) resistance. Baicalein was reported to have an effect on reversal of chemotherapeutic agents resistance. However, the molecular mechanism of Baicalein on JAK2/STAT5 signaling inhibition against drug resistance in bone marrow (BM) microenvironment that had not been clearly revealed. METHODS: We co-cultured hBMSCs and CML CD34+ cells as a model of SFM-DR. Further researches were performed to clarify the reverse mechanisms of Baicalein on SFM-DR model and engraftment model. The apoptosis, cytotoxicity, proliferation, GM-CSF secretion, JAK2/STAT5 activity, the expression of SHP-1 and DNMT1 were analyzed. To validate the role of SHP-1 on the reversal effect of Baicalein, the SHP-1 gene was over-expressed by pCMV6-entry shp-1 and silenced by SHP-1 shRNA, respectively. Meanwhile, the DNMT1 inhibitor decitabine was used. The methylation extent of SHP-1 was evaluated using MSP and BSP. The molecular docking was replenished to further explore the binding possibility of Baicalein and DNMT1. RESULTS: BCR/ABL-independent activation of JAK2/STAT5 signaling was involved in IM resistance in CML CD34+ subpopulation. Baicalein significantly reversed BM microenvironment-induced IM resistance not through reducing GM-CSF secretion, but interfering DNMT1 expression and activity. Baicalein induced DNMT1-mediated demethylation of the SHP-1 promoter region, and subsequently activated SHP-1 re-expression, which resulted in an inhibition of JAK2/STAT5 signaling in resistant CML CD34+ cells. Molecular docking model indicated that DNMT1 and Baicalein had binding pockets in 3D structures, which further supported Baicalein might be a small-molecule inhibitor targeting DNMT1. CONCLUSIONS: The mechanism of Baicalein on improving the sensitivity of CD34+ cells to IM might be correlated with SHP-1 demethylation by inhibition of DNMT1 expression. These findings suggested that Baicalein could be a promising candidate by targeting DNMT1 to eradicate minimal residual disease in CML patients. Video Abstract.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Desmetilación , Flavonoides , Mesilato de Imatinib , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT5 , Microambiente Tumoral
15.
Pharmacol Res ; 189: 106704, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813093

RESUMEN

The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.


Asunto(s)
Relojes Circadianos , Células Estrelladas Hepáticas , Ratones , Animales , Metilación , Cirrosis Hepática/metabolismo , Hígado , Nucleotidiltransferasas , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/farmacología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo
16.
Pharmacol Res ; 187: 106590, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464146

RESUMEN

Relevant studies have recognized the important role of hepatic stellate cell (HSC) senescence in anti-liver fibrosis. Cellular senescence is believed to be regulated by the cGAS-STING signaling pathway. However, underlying exact mechanisms of cGAS-STING pathway in hepatic stellate cell senescence are still unclear. Here, we found that Oroxylin A could promote senescence in HSC by activating the cGAS-STING pathway. Moreover, activation of the cGAS-STING pathway was dependent on DNMT3A downregulation, which suppressed cGAS gene DNA methylation. Interestingly, the attenuation of DNMT activity relied on the reduction of methyl donor SAM level. Noteworthy, the downregulation of SAM levels implied the imbalance of methionine cycle metabolism, and MAT2A was considered to be an important regulatory enzyme in metabolic processes. In vivo experiments also indicated that Oroxylin A induced senescence of HSCs in mice with liver fibrosis, and DNMT3A overexpression partly offset this effect. In conclusion, we discovered that Oroxylin A prevented the methylation of the cGAS gene by preventing the production of methionine metabolites, which promoted the senescence of HSCs. This finding offers a fresh hypothesis for further research into the anti-liver fibrosis mechanism of natural medicines.


Asunto(s)
Metilación de ADN , Células Estrelladas Hepáticas , Animales , Ratones , Senescencia Celular , ADN , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Metionina/metabolismo , Nucleotidiltransferasas/genética
17.
Cell Biochem Funct ; 41(8): 1076-1092, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947373

RESUMEN

COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , SARS-CoV-2/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Hepatopatías/etiología
18.
Appl Opt ; 62(16): 4342-4348, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706926

RESUMEN

This paper introduces a scheme of near-zero beam drift tracking technology with two-stage compression structures for the coordinate accuracy measurement of a laser tracker. The Galileo telescope system, with a magnification of 21.43, is designed to compress the beam drift in a dual-frequency interferometer. The azimuth and pitch of the beam drift are compressed to 2.41 in. and 2.92 in., and the compression rates are 95.0% and 91.9%, respectively. The improved four degrees of freedom position-sensitive detector system is used to further compress the beam drift. The peak-to-peak value of the beam drift is 0.9 in. in the azimuth direction and 2.1 in. in the pitch direction. The standard deviation of azimuth is within 0.15 in, and the pitch is within 0.43 in. The coordinate accuracy of the laser tracker can be improved 6.85 parts per million by simulation. The developed two-stage compression near-zero beam drift system can be used in the laser tracker to realize large-scale precision instrument geometric measurement.

19.
Phytother Res ; 37(1): 50-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36218220

RESUMEN

Myocardial infarction (MI) is one of the diseases with high fatality rate. Berberine (BBR) is a monomer compound with various biological functions. And some studies have confirmed that BBR plays an important role in alleviating cardiomyocyte injury after MI. However, the specific mechanism is unclear. In this study, we induced a model of MI by ligation of the left anterior descending coronary artery and we surprisingly found that BBR significantly improved ventricular remodeling, with a minor inflammatory and oxidative stress injury, and stronger angiogenesis. Moreover, BBR inhibited the secretion of Wnt5a/ß-catenin pathway in macrophages after MI, thus promoting the differentiation of macrophages into M2 type. In summary, BBR effectively improved cardiac function of mice after MI, and the potential protective mechanism was associated with the regulation of inflammatory responses and the inhibition of macrophage Wnt5a/ß-catenin pathway in the infarcted heart tissues. Importantly, these findings supported BBR as an effective cardioprotective drug after MI.


Asunto(s)
Berberina , Infarto del Miocardio , Ratones , Animales , Berberina/farmacología , beta Catenina/metabolismo , Miocardio , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos , Macrófagos/metabolismo
20.
Plant Dis ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172976

RESUMEN

Blueberry (Vaccinium corymbosum) plants are popular all over the world due to their high nutritional value and health benefits. In October 2020, blueberry stems (cv. O'Neal) displaying reddish brown necrotic lesions were observed from a blueberry field in Anqing (Anhui, China), with the incidence of approximately 90%. The affected plants were somewhat stunted that had smaller fruit, and in severe cases, partial or whole plant died. We randomly selected three sampling sites to collect stems with the symptoms. Samples at the margin between diseased and healthy tissues were taken out, cut into 5 mm pieces in length,and then mixed them together. Twenty small samples were surface-sterilized, and plated onto potato dextrose agar (PDA). The plates were incubated at 25°C in the dark until fungal colonies were observed. After subculturing single hyphal tips, 9 out of 12 fungal isolates with similar morphologies were obtained. The representative isolate, LMKY12 was selected for further identification. The colonies on PDA showed white, fluffy aerial mycelia with 7.9  0.2 mm (n=5) diameter after inoculation in darkness at 25°C for one week. The colony darkens in color with age, yellowish pigmentation in reverse were observed. After 15 days of incubation, dark brown, irregular hard particles (fruiting bodies in sexual stage) accumulated on the surface of the colonies. Asci were 8-spored, sessile, club-like, hyaline, and 35-46 x 6-9 µm (n=30) in size. The ascospores were oval or spindle shaped, two-celled, constricted at division, and containing four guttulates with larger guttules at centre and smaller one at ends, measured 9-11 x 2-4 um (n=50). No sporulation observed on blueberry stems after inoculated 30 days. In order to induce the production of conidiophores, mycelial plugs were placed on blueberry leaves and cultured in darkness at 25°C. There are two types of conidia observed after 20 days of inoculation. Alpha conidia were aseptate, hyaline, smooth, ovate to ellipsoidal, often biguttulate, measured 5.33-7.26 x 1.65-2.53 µm (n=50). Beta conidia were hyaline, linear, measured 12.60-17.91 x 0.81-1.38 µm (n=30). The morphological characteristics matched the previous description of D. sojae (Udayanga et al. 2015; Guo et al. 2020). To confirm the identification, the mycelial genomic DNA of LMKY12 was extracted as a template. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-α gene (TEF1-α), and calmodulin (CAL) were amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R, and CAL-228F/CAL-737R (Carbone and Kohn 1999), respectively. BLAST analysis revealed that the ITS (ON545758), CAL (OP886852), and TEF1-α (OP886853) sequences were 100% (527/527 base pairs), 99.21% (504/508 base pairs), and 99.41% (336/338 base pairs) similar to the strain FAU636 of D. sojae (KJ590718, KJ612115, KJ590761), respectively. Phylogenetic analysis based on concatenated sequences of ITS, TEF1-α, and CAL using MEGA 7.0 by maximum likelihood attributed the isolate LMKY12 to the D. sojae clade. Pathogenicity tests were performed on blueberry cv. O'Neal using detached stems (n=8) in laboratory, one-year-old potted plants (n=4) in greenhouse. Inoculations were done by placing mycelial plugs (7 mm in diameter) taken from a 7-day-old PDA culture on wounded stems. Inoculations with uncolonized agar plugs served as negative controls. Reddish dark brown lesions similar to the symptoms were observed on all inoculated stems 7 days after inoculation. No symptoms developed on control stems. Reisolations were successfully made from all the inoculated stems, and the pathogen was confirmed by the presence of pycnidia, alpha conidia and beta conidia. To our knowledge, this is the first report of D. sojae causing blueberry stem canker in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA