RESUMEN
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Asunto(s)
Axonema , Centriolos , Humanos , Centriolos/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Microtúbulos/metabolismo , FlagelosRESUMEN
Phosphatidylinositol 4-kinase beta (PI4KB) is a member of the PI4K family, which is mainly enriched and functions in the Golgi apparatus. The kinase domain of PI4KB catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 4-phosphate, a process that regulates various sub-cellular events, such as non-vesicular cholesterol and ceramide transport, protein glycosylation, and vesicle transport, as well as cytoplasmic division. In this study, a strain of PI4KB knockout mouse, immunofluorescence, reverse transcription polymerase chain reaction and microinjection were used to characterize the cytological location and biological function of PI4KB in the mouse embryos. we found that knocking down Pi4kb in mouse embryos resulted in embryonic lethality at around embryonic day (E) 7.5. Additionally, we observed dramatic fluctuations in PI4KB expression during the development of preimplantation embryos, with high expression in the 4-cell and morula stages. PI4KB colocalized with the Golgi marker protein TGN46 in the perinuclear and cytoplasmic regions in early blastomeres. Postimplantation, PI4KB was highly expressed in the epiblast of E7.5 embryos. Treatment of embryos with PI4KB inhibitors was found to inhibit the development of the morula into a blastocyst and the normal progression of cytoplasmic division during the formation of a 4-cell embryo. These findings suggest that PI4KB plays an important role in mouse embryogenesis by regulating various intracellular vital functions of embryonic cells.
Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Desarrollo Embrionario , Animales , Ratones , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Blastocisto/fisiología , Embrión de Mamíferos , Desarrollo Embrionario/genética , Ratones Noqueados , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: While previous studies have primarily focused on Glucose transporter type 1 (GLUT1) related glucose metabolism signaling, we aim to discover if GLUT1 promotes tumor progression through a non-metabolic pathway. METHODS: The RNA-seq and microarray data were comprehensively analyzed to evaluate the significance of GLUT1 expression in lung adenocarcinoma (LUAD). The cell proliferation, colony formation, invasion, and migration were used to test GLUT1 's oncogenic function. Co-immunoprecipitation and mass spectrum (MS) were used to uncover potential GLUT1 interacting proteins. RNA-seq, DIA-MS, western blot, and qRT-PCR to probe the change of gene and cell signaling pathways. RESULTS: We found that GLUT1 is highly expressed in LUAD, and higher expression is related to poor patient survival. GLUT1 knockdown caused a decrease in cell proliferation, colony formation, migration, invasion, and induced apoptosis in LUAD cells. Mechanistically, GLUT1 directly interacted with phosphor-epidermal growth factor receptor (p-EGFR) and prevented EGFR protein degradation via ubiquitin-mediated proteolysis. The GLUT1 inhibitor WZB117 can increase the sensitivity of LUAD cells to EGFR-tyrosine kinase inhibitors (TKIs) Gefitinib. CONCLUSIONS: GLUT1 expression is higher in LUAD and plays an oncogenic role in lung cancer progression. Combining GLUT1 inhibitors and EGFR-TKIs could be a potential therapeutic option for LUAD treatment.
Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Receptores ErbB , Transportador de Glucosa de Tipo 1 , Neoplasias Pulmonares , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fosforilación , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Unión Proteica , Apoptosis , Estabilidad ProteicaRESUMEN
BACKGROUND: A growing body of evidence indicates that histone variants play an oncogenic role in cancer progression. However, the role and mechanism of histone variant H2AZ1 in lung cancer remain poorly understood. In this study, we aim to identify novel functions and molecular mechanisms of H2AZ1 in lung cancer. METHODS: We analyzed H2AZ1 expression in lung adenocarcinoma using several RNA-seq and microarray datasets. Immunohistochemistry staining for H2AZ1 was performed on two sets of lung cancer tissue microarrays. To study the function of H2AZ1, we conducted assays for cell proliferation, colony formation, invasion, and migration. We employed CUT&Tag-seq, ATAC-seq, RNA-seq, and Western blotting to explore the regulatory patterns and potential mechanisms of H2AZ1 in lung adenocarcinoma. RESULTS: Our findings reveal that H2AZ1 is highly expressed in lung cancer and high levels of H2AZ1 mRNA are associated with poor patient survival. Silencing H2AZ1 impaired cell proliferation, colony formation, migration, and invasion. Mechanistically, our CUT&Tag-seq, ATAC-seq, and RNA-seq results showed that H2AZ1 is primarily deposited around TSS and affects multiple oncogenic signaling pathways. Importantly, we uncovered that H2AZ1 may drive lung cancer progression through the RELA-HIF1A-EGFR signaling pathway. CONCLUSION: H2AZ1 plays an oncogenic role via several cancer-related pathways, including the RELA-HIF1A-EGFR axis in lung cancer. Intervention targeting H2AZ1 and its related signaling genes may have translational potential for precision therapy.
Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Receptores ErbB , Histonas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Transducción de Señal , Factor de Transcripción ReIA , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transducción de Señal/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Histonas/metabolismo , Histonas/genética , Proliferación Celular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismoRESUMEN
Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.
Asunto(s)
Autofagia , Proliferación Celular , Leucemia Mieloide Aguda , Ratones Desnudos , Tropomodulina , alfa Carioferinas , Humanos , Animales , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Línea Celular Tumoral , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones Endogámicos BALB C , Masculino , Silenciador del Gen , Femenino , Células THP-1RESUMEN
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT-B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT-B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT-B complex components cooperate in multiciliogenesis.
Asunto(s)
Cuerpos Basales , Infertilidad Masculina , Proteínas de la Membrana , Proteínas de Unión al ARN , Animales , Cuerpos Basales/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Xenopus laevisRESUMEN
Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domain-containing protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.
Asunto(s)
Centriolos , Proteínas Asociadas a Microtúbulos , Animales , Ratones , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plasma Seminal/metabolismoRESUMEN
BACKGROUND: Application of accumulated experience and management measures in the prevention and control of coronavirus disease 2019 (COVID-19) has generally depended on the subjective judgment of epidemic intensity, with the quality of prevention and control management being uneven. The present study was designed to develop a novel risk management system for COVID-19 infection in outpatients, with the ability to provide accurate and hierarchical control based on estimated risk of infection. METHODS: Infection risk was estimated using an auto regressive integrated moving average model (ARIMA). Weekly surveillance data on influenza-like-illness (ILI) among outpatients at Xuanwu Hospital Capital Medical University and Baidu search data downloaded from the Baidu Index in 2021 and 22 were used to fit the ARIMA model. The ability of this model to estimate infection risk was evaluated by determining the mean absolute percentage error (MAPE), with a Delphi process used to build consensus on hierarchical infection control measures. COVID-19 control measures were selected by reviewing published regulations, papers and guidelines. Recommendations for surface sterilization and personal protection were determined for low and high risk periods, with these recommendations implemented based on predicted results. RESULTS: The ARIMA model produced exact estimates for both the ILI and search engine data. The MAPEs of 20-week rolling forecasts for these datasets were 13.65% and 8.04%, respectively. Based on these two risk levels, the hierarchical infection prevention methods provided guidelines for personal protection and disinfection. Criteria were also established for upgrading or downgrading infection prevention strategies based on ARIMA results. CONCLUSION: These innovative methods, along with the ARIMA model, showed efficient infection protection for healthcare workers in close contact with COVID-19 infected patients, saving nearly 41% of the cost of maintaining high-level infection prevention measures and enhancing control of respiratory infections.
Asunto(s)
COVID-19 , Infección Hospitalaria , Virosis , Humanos , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Pacientes Ambulatorios , Control de InfeccionesRESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is an infectious disease that seriously affects human life and health. Despite centuries of efforts to control it, in recent years, the emergence of multidrug-resistant bacterial pathogens of M. tuberculosis due to various factors has exacerbated the disease, posing a serious threat to global health. Therefore, a new method to control M. tuberculosis is urgently needed. Phages, viruses that specifically infect bacteria, have emerged as potential biocontrol agents for bacterial pathogens due to their host specificity. In this study, a mycobacterium phage, Henu3, was isolated from soil around a hospital. The particle morphology, biological characteristics, genomics and phylogeny of Henu3 were characterized. Additionally, to explore the balance between phage resistance and stress response, phage Henu3-resistant strains 0G10 and 2E1 were screened by sequence passage and bidirectional validation methods, which significantly improved the sensitivity of phage to antibiotics (cefotaxime and kanamycin). By whole-genome re-sequencing of strains 0G10 and 2E1, 12 genes involved in cell-wall synthesis, transporter-encoded genes, two-component regulatory proteins and transcriptional regulatory factor-encoded genes were found to have mutations. These results suggest that phage Henu3 has the potential to control M. tuberculosis pathogens, and phage Henu3 has the potential to be a new potential solution for the treatment of M. tuberculosis infection.
Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/virología , Mycobacterium tuberculosis/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/fisiología , Humanos , Micobacteriófagos/genética , Micobacteriófagos/fisiología , Secuenciación Completa del Genoma , Aptitud GenéticaRESUMEN
Non-small-cell lung cancer (NSCLC) is one of the deadliest cancers worldwide, and metastasis is considered one of the leading causes of treatment failure in NSCLC. Wnt/ß-catenin signaling is crucially involved in epithelial-mesenchymal transition (EMT), a crucial factor in promoting metastasis, and also contributes to resistance developed by NSCLC to targeted agents. Frizzled-7 (Fzd7), a critical receptor of Wnt/ß-catenin signaling, is aberrantly expressed in NSCLC and has been confirmed to be positively correlated with poor clinical outcomes. SHH002-hu1, a humanized antibody targeting Fzd7, was previously successfully generated by our group. Here, we studied the anti-tumor effects of SHH002-hu1 against NSCLC and revealed the underlying mechanism. First, immunofluorescence (IF) and near-infrared (NIR) imaging assays showed that SHH002-hu1 specifically binds Fzd7+ NSCLC cells and targets NSCLC tissues. Wound healing and transwell invasion assays indicated that SHH002-hu1 significantly inhibits the migration and invasion of NSCLC cells. Subsequently, TOP-FLASH/FOP-FLASH luciferase reporter, IF, and western blot assays validated that SHH002-hu1 effectively suppresses the activation of Wnt/ß-catenin signaling, and further attenuates the EMT of NSCLC cells. Finally, the subcutaneous xenotransplanted tumor model of A549/H1975, as well as the popliteal lymph node (LN) metastasis model, was established, and SHH002-hu1 was demonstrated to inhibit the growth of NSCLC xenografts and suppress LN metastasis of NSCLC. Above all, SHH002-hu1 with selectivity toward Fzd7+ NSCLC and the potential of inhibiting invasion and metastasis of NSCLC via disrupting Wnt/ß-catenin signaling, is indicated as a good candidate for the targeted therapy of NSCLC.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anticuerpos/farmacología , Antineoplásicos/farmacología , beta Catenina/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Vía de Señalización WntRESUMEN
Solar irradiance variations have a direct effect on the accuracy and repeatability of identifying spectral signatures in the remote sensing field experiments. Solar simulators have been deployed to allow for testing under controlled and reproducible laboratory conditions. However, it is difficult and expensive to make a large-area solar simulation with the appropriate spectral content and spatial uniformity of irradiance. In this study, a hybrid solar simulator has been designed and constructed to provide large-area illumination for remote sensing simulation applications. A design method based on the two-phase genetic algorithm is proposed to improve the performance of the spectral match and spatial uniformity, which no longer relies on the traditional trial-and-error technique. The first phase is used to determine the most appropriate configuration of different lamps in order to represent the solar spectrum. The second phase is to accommodate an optimal placement of the multiple sources to achieve irradiance uniformity. Both numerical simulations and experiments were performed to verify the performances. The results showed that the solar simulator provided a good spectral match and spatial irradiance for simulating the variations in direct normal irradiance at different solar zenith angles. In addition, the modular design makes it possible to adjust irradiance on the target area without altering the spectral distribution. This work demonstrates the development and measurement of a hybrid solar simulator with a realizable optimal configuration of multiple lamps, and offers the prospect of a scalable, large-area solar simulation.
RESUMEN
The refractive index is a key factor in the design and analysis of noncollinear acousto-optic tunable filter (AOTF) devices. While previous studies have corrected and analyzed the effects of anisotropic birefringence and the rotatory property, they still rely on paraxial and elliptical approximations, which can introduce non-negligible errors (0.5° or more) into the geometric parameters of TeO2 noncollinear AOTF devices. In this paper, we address these approximations and their effects through refractive index correction. This fundamental theoretical research has significant implications for the design and application of noncollinear AOTF devices.
Asunto(s)
Ojo , Refractometría , Birrefringencia , RotaciónRESUMEN
Gastric cancer (GC) is one of the most common malignant tumors worldwide. Thus, the development of safe and effective therapeutic compounds for GC treatment is urgently required. Here, we aimed to examine the role of picropodophyllin (PPP), a compound extracted from the rhizome of Dysosma versipellis (Hance) M. Cheng ex Ying, on the proliferation of GC cells. Our study revealed that PPP inhibits the proliferation of GC cells in a dose-dependent manner by inducing apoptosis. Moreover, our study elucidated that PPP suppresses the growth of GC tumor xenografts with no side effects of observable toxicity. Mechanistically, PPP exerts its effects by blocking the AKT/mammalian target of rapamycin (mTOR) signaling pathway; these effects are markedly abrogated by the overexpression of constitutively active AKT. Furthermore, drug affinity responsive target stability (DARTS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) revealed that heat shock protein 90 (HSP90) may be a potential target of PPP. Surface plasmon resonance and immunoprecipitation assay validated that PPP directly targets HSP90 and disrupts the binding of HSP90 to AKT, thereby suppressing GC cell proliferation. Thus, our study revealed that PPP may be a promising therapeutic compound for GC treatment.
RESUMEN
Antrodia cinnamomea is a traditional plant and a unique fungus native to Taiwan that has been reported to have many biological functions, including anti-inflammatory and anticancer activities. The compound 4-acetylarylquinolinol B (4-AAQB) is one of the main bioactive compounds in the stamens of Antrodia cinnamomea, and has many biological functions, such as anti-inflammatory, antiproliferative, blood sugar reduction, antimetastasis, and vascular tone relaxation. In recent years, the increasing evidences have shown that 4-AAQB is involved in many diseases; however, the relevant mechanisms have not been fully clarified. This review aimed to clarify the improvement by 4-AAQB in different pathological processes, as well as the compound's molecular mechanisms, in order to provide a theoretical reference for future related research.
RESUMEN
The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.
Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Centriolos/genéticaRESUMEN
Fringe projection profilometry is widely used in optical metrology, and fringe analysis is important to improve measurement accuracy. However, the fringe images captured by cameras are influenced by many factors, an analytical study of which, to characterize the imaging process, is difficult to perform. We propose a method to accurately simulate the real imaging system in the virtual environment using ray tracing algorithm. The light transport coefficients of the cameras are measured to simulate defocus instead of using Gaussian function. Experimental results show that the proposed method can simulate a physical system in the virtual environment more accurately than the Gaussian function at large defocus condition.
RESUMEN
We propose a period control method of liquid crystal polarization grating (LCPG) based on an nterference-free and single exposure process. By adjusting three parameters of exposure setup, including incident angle of exposure beam, wedge angle of birefringent prism and tilt angle of the sample, polarization distribution of the exposure beam is changed. The spatially variant polarization of the exposure beam is transferred to liquid crystal (LC) molecules by an azo-dye photo-sensitive layer. Consequently, the LCPG with the target period is obtained. The proposed method has high flexibility and a wide range of period adjustment covering several microns to more than thousands of microns according to calculated results. Experimental results fit well with calculations. The LCPGs with different values of period from 4.5µm to more than 200µm have been realized experimentally. The proposed interference-free method would accelerate the application of LCPGs with a robust and simple fabrication process.
RESUMEN
To solve the problem caused by jamming, an acousto-optic tunable filter (AOTF)-based imaging spectrometer and a corresponding spatial-spectral discrimination method are proposed for aerial targets. The system has the capability of staring imaging and is electronically tunable, which provides the spatial location and a distinguishable spectral feature in a few images. Since AOTF operates in a frame mode, the spectral brightness of the targets can be predicted by Kalman filtering, like with the motion model. The final target state is updated by using synthetic spatial-spectral information to realize fast decision-making. The results show that the proposed method is more targeted to solve the problem caused by jamming, compared with the traditional energy discrimination method.
RESUMEN
Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.
Asunto(s)
Dinámicas Mitocondriales , Neoplasias Gástricas , Ratones , Animales , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Ratones Desnudos , Proteínas Quinasas/farmacología , Apoptosis , Carcinogénesis , Proliferación Celular , Línea Celular TumoralRESUMEN
We propose an improved opposition-based self-adaptive differential evolution (IOSaDE) algorithm for multi-parameter optimization in vibrational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) thermometry. This new algorithm self-adaptively combines the advantages of three mutation schemes and introduces two opposite population stages to avoid premature convergence. The probability of choosing each mutation scheme will be updated based on its previous performance after the first learning period. The IOSaDE method is compared with nine other traditional differential evolution (DE) methods in simulated spectra with different simulation parameters and experimental spectra at different probe time delays. In simulated spectra, both the average and standard deviation values of the final residuals from 20 consecutive trials using IOSaDE are more than two orders of magnitude smaller than those using other methods. Meanwhile, the fitting temperatures in simulated spectra using IOSaDE are all consistent with the target temperatures. In experimental spectra, the standard deviations of the fitting temperatures from 20 consecutive trials decrease more than four times by using IOSaDE, and the errors of the fitting temperatures also decrease more than 18%. The performance of the IOSaDE algorithm shows the ability to achieve accurate and stable temperature measurement in CARS thermometry and indicates the potential in applications where multiple parameters need to be considered.