RESUMEN
Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine-specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1-containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV-delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1-depleted sEVs do not. Taken together, we demonstrate that LSD1-loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.
Asunto(s)
Vesículas Extracelulares , Neoplasias Gástricas , Histona Demetilasas/genética , Humanos , Lisina , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genéticaRESUMEN
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
BACKGROUND: Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown. METHODS: Expression LSD1 and PD-L1 in GC patients was analyzed by immunohistochemical (IHC) and Western blotting. Exosomes were isolated from the culture medium of GC cells using an ultracentrifugation method and characterized by transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), sucrose gradient centrifugation, and Western blotting. The role of exosomal PD-L1 in T-cell dysfunction was assessed by flow cytometry, T-cell killing and enzyme-linked immunosorbent assay (ELISA). RESULTS: Through in vivo exploration, mouse forestomach carcinoma (MFC) cells with LSD1 knockout (KO) showed significantly slow growth in 615 mice than T-cell-deficient BALB/c nude mice. Meanwhile, in GC specimens, expression of LSD1 was negatively correlated with that of CD8 and positively correlated with that of PD-L1. Further study showed that LSD1 inhibited the response of T cells in the microenvironment of GC by inducing the accumulation of PD-L1 in exosomes, while the membrane PD-L1 stayed constant in GC cells. Using exosomes as vehicles, LSD1 also obstructed T-cell response of other cancer cells while LSD1 deletion rescued T-cell function. It was found that while relying on the existence of LSD1 in donor cells, exosomes can regulate MFC cells proliferation with distinct roles depending on exosomal PD-L1-mediated T-cell immunity in vivo. CONCLUSION: LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in GC; this finding indicates a new mechanism with which LSD1 may regulate cancer immunity in GC and provides a new target for immunotherapy against GC.
Asunto(s)
Antígeno B7-H1 , Neoplasias Gástricas , Animales , Histona Demetilasas/genética , Humanos , Ratones , Ratones Desnudos , Neoplasias Gástricas/genética , Linfocitos T , Microambiente TumoralRESUMEN
In addition to rhizobia, other non-symbiotic endophytic bacteria also have been simultaneously isolated from the same root nodules. The existence of non-symbiotic endophytic bacteria in leguminous root nodules is a universal phenomenon. The vast majority of studies have detected endophytic bacteria in other plant tissues. In contrast, little systemic observation has been made on the non-symbiotic endophytic bacteria within leguminous root nodules. The present investigation was carried out to isolate plant growth-promoting endophytic non-symbiotic bacteria from indigenous leguminous Sphaerophysa salsula and their influence on plant growth. A total of 65 endophytic root nodule-associated bacteria were isolated from indigenous legume S. salsula growing in the northwestern arid regions of China. When combining our previous work with the current study, sequence analysis of the nifH gene revealed that the strain belonging to non-nodulating Bacillus pumilus Qtx-10 had genes similar to those of Rhizobium leguminosarum Qtx-10-1. The results indicated that horizontal gene transfer could have occurred between rhizobia and non-symbiotic endophyties. Under pot culture conditions, out of the 20 representative endophytic isolates, 15 with plant growth-promoting traits, such as IAA production, ACC deaminase, phosphate solubilization, chitinase, siderophore, and fungal inhibition activity showed plant growth-promoting activity with respect to various plant parameters such as chlorophyll content, fresh weight of plant, shoot length, nodule number per plant and average nodule weight per plant when co-inoculated with rhizobial bioinoculant Mesorhizobium sp. Zw-19 under N-free culture conditions. Among them, Bacillus pumilus Qtx-10 and Streptomyces bottropensis Gt-10 were excellent plant growth-promoting bacteria, which enhanced the seeding fresh weight by 87.5% and the shoot length by 89.4%, respectively. The number of nodules grew more than 31.89% under field conditions. Our findings indicate the frequent presence of these non-symbiotic endophytic bacteria within root nodules, and that they help to improve nodulation and nitrogen fixation in legume plants through synergistic interactions with rhizobia.
Asunto(s)
Bacillus pumilus/metabolismo , Fabaceae/crecimiento & desarrollo , Fabaceae/microbiología , Mesorhizobium/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Streptomyces/metabolismo , Liasas de Carbono-Carbono , China , Endófitos/aislamiento & purificación , Transferencia de Gen Horizontal , Mesorhizobium/genética , Fijación del Nitrógeno , Filogenia , Desarrollo de la Planta/fisiología , SideróforosRESUMEN
Two series of derivatives with 1,2,3-triazole as heterocyclic moiety of Jiyuan Oridonin A, a new ent-kaurene diterpenoid which was isolated from genus Isodon rubescens, were synthesized and biologically evaluated. All the derivatives possessed good anti-proliferative activities. Among them, compound 8g was found to significantly induce cell apoptosis and cell cycle arrest in MGC-803 via a series of signals activated by the increased intracellular ROS levels.
Asunto(s)
Triazoles/química , Triazoles/farmacología , Acetilcisteína/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Triazoles/síntesis químicaRESUMEN
The aim of this paper is to improve the position accuracy of a six degree of freedom medical robot. The improvement in accuracy is achieved without the use of any external measurement device. Instead, this work presents a novel calibration approach based on using an embedded force-torque sensor to identify the robot's kinematic parameters and thereby enhance the positioning accuracy. A simulation study demonstrated that our calibration approach is effective, whether or not any measurement noise is present: the position error is improved, inside the robot target workspace, from 12 mm to 0.320 mm, for the maximum values, and from 9 mm to 0.2771 mm, for the mean errors.
RESUMEN
Neddylation is the writing of monomers or polymers of neural precursor cells expressed developmentally down-regulated 8 (NEDD8) to substrate. For neddylation to occur, three enzymes are required: activators (E1), conjugators (E2), and ligators (E3). However, the central role is played by the ubiquitin-conjugating enzymes E2M (UBE2M) and E2F (UBE2F), which are part of the E2 enzyme family. Recent understanding of the structure and mechanism of these two proteins provides insight into their physiological effects on apoptosis, cell cycle arrest and genome stability. To treat cancer, it is therefore appealing to develop novel inhibitors against UBE2M or UBE2F interactions with either E1 or E3. In this evaluation, we summarized the existing understanding of E2 interaction with E1 and E3 and reviewed the prospective of using neddylation E2 as a pharmacological target for evolving new anti-cancer remedies.
RESUMEN
Histone deacetylase 6 (HDAC6) is the only member of the HDAC family that resides primarily in the cytoplasm with two catalytic domains and a ubiquitin-binding domain. HDAC6 is highly expressed in various solid tumors and participates in a wide range of biological activities, including hormone receptors, the p53 signaling pathway, and the kinase cascade signaling pathway due to its unique structural foundation and abundant substrate types. Additionally, HDAC6 can function as an oncogenic factor in solid tumors, boosting tumor cell proliferation, invasion and metastasis, drug resistance, stemness, and lowering tumor cell immunogenicity, so assisting in carcinogenesis. Pan-HDAC inhibitors for cancer prevention are associated with potential cardiotoxicity in clinical investigations. It's interesting that HDAC6 silencing didn't cause any significant harm to normal cells. Currently, the use of HDAC6 specific inhibitors, individually or in combination, is among the most promising therapies in solid tumors. This review's objective is to give a general overview of the structure, biological functions, and mechanism of HDAC6 in solid tumor cells and in the immunological milieu and discuss the preclinical and clinical trials of selective HDAC6 inhibitors. These endeavors highlight that targeting HDAC6 could effectively kill tumor cells and enhance patients' immunity during solid tumor therapy.
Asunto(s)
Neoplasias , Humanos , Proliferación Celular , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Neoplasias/tratamiento farmacológicoRESUMEN
Sex differences are evident in the incidence and mortality of diverse cancers. With the development of personalized approaches in cancer treatment, the impact of sex differences has not been systematically incorporated into preclinical and clinical cancer research. The molecular mechanisms underlying sex differences in cancer have not been elucidated. Here, we developed the first database of Sex Differences in Cancer (SDC), a web-based public database that integrates resources from multiple databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), UCSC Xena, Broad Institute Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug Sensitivity in Cancer (GDSC). SDC contains 27 types of cancers, 6 types of molecular data, more than 10,000 donors, 977 cancer cell lines were used to analyze sex differences among cancers. It provides five main modules: Survival and phenotype, Molecular differences, Signatures and pathways, Therapy response, Download. Users can download the all the visualized results and raw data after analysis. Collectively, SDC is the first integrated database to analyze sex differences in cancer on the web server, which will strengthen our understanding of the role of sex in cancers. It is implemented in Shiny-server and freely available for public use at http://sdc.anticancer.xyz.
RESUMEN
AIMS: Lysine-specific demethylase 5B (KDM5B) is an epigenetic regulator of chromatin that catalyzes the demethylation of histone 3 lysine 4. It is overexpressed in multiple cancer types and acts as a therapeutic target in cancer therapy. Nevertheless, its upstream regulatory pathway is not completely understood, prompting the search for the underlying biological factors driving KDM5B overexpression. MATERIALS AND METHODS: A comprehensive analysis was performed to examine the association between KDM5B overexpression and copy number variation (CNV), somatic mutation, mRNA expression, miRNA expression, and clinical characters from The Cancer Genome Atlas database. Coexpression and function enrichment analyses were performed with KDM5B-coexpressed genes. The gastric cancer (GC) cell line MKN45 was utilized to verify the regulation of KDM5B using the transcription factor (TF) Yin Yang 1 (YY1) and miR-29a-3p. KEY FINDINGS: KDM5B was overexpressed and associated with poor prognosis in GC. KDM5B upregulation was driven by CNV amplification and DNA hypomethylation rather than by KDM5B mutations. Enrichment analysis revealed that KDM5B-coexpressed genes were primarily related to the transmembrane transport function and the ubiquitin-mediated proteolysis signaling pathway. As a TF, YY1 might bind to the KDM5B promoter region to regulate KDM5B expression. In addition, miR-29a-3p might bind to and negatively regulate KDM5B expression. SIGNIFICANCE: Our results demonstrate that KDM5B expression is regulated via CNV amplification, DNA hypomethylation, and YY1 and miR-29a-3p; KDM5B expression regulation is associated with patient survival and tumor cell proliferation.
Asunto(s)
MicroARNs , Neoplasias Gástricas , Línea Celular Tumoral , Proliferación Celular/genética , ADN , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Neoplasias Gástricas/genéticaRESUMEN
An aerobic, brown-pigmented, non-spore-forming, endophytic bacterium, designated strain Zy-3(T), was isolated from root nodules of Sphaerophysa salsula, a native leguminous herb belonging to the family Leguminosae growing in north-western China. Cells of strain Zy-3(T) were non-motile, Gram-negative rods. Strain Zy-3(T) produced siderophores and showed antifungal activity. Phylogenetic analysis of the 16S rRNA gene sequence indicated that the closest relative of this organism was Paracoccus halophilus HN-182(T) (96.6â% sequence similarity). On the basis of genotype, fatty acid patterns and physiological characteristics, a novel species Paracoccus sphaerophysae sp. nov. is proposed, with Zy-3(T) (=ACCC 05413(T) =HAMBI 3106(T)) as the type strain.
Asunto(s)
Fabaceae/microbiología , Paracoccus/clasificación , Paracoccus/aislamiento & purificación , Sideróforos/metabolismo , Antibiosis , Antifúngicos/metabolismo , Técnicas de Tipificación Bacteriana , China , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Paracoccus/genética , Paracoccus/fisiología , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
As a continuation of our research on developing potent and potentially safe anti-proliferative agents, two series of novel Jiyuan Oridonin A-1,2,3-triazole-azole hybrids were designed, synthesized and evaluated for their anti-proliferative activity against four selected cancer cell lines (MGC-803, MCF-7, PC-3, Eca-109). Some compounds with better growth inhibitory effects were chosen to carry out further studies in A549 and SMMC-7721. Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Particularly, the most active agent 8b showed high potency against human cancer cells with IC50 ranging from 0.2⯱â¯0.0 to 5.0⯱â¯0.9⯵M. Cellular mechanism studies elucidated compound 8b arrests cell cycle at G1 phase and induce a strong apoptotic response in SMMC-7721â¯cells. Furthermore, 8b could inhibit the colony formation and migration via Wnt signaling pathway in SMMC-7721â¯cells. For all these reasons, compound 8b holds promising potential as anti-proliferative agent.
Asunto(s)
Antineoplásicos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diterpenos de Tipo Kaurano/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química , Células Tumorales CultivadasRESUMEN
Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays.
RESUMEN
Using Alternaria longipes as tested phytopathogen, endophytic bacteria isolated from soybean nodules were selected to study antagonistic effects by confrontation and metabolic liquid culture methods. The inhibited hyphae were determined by microscopic observation, and the screened strains were characterized by cell culture, physiological and biochemical tests, 16S rDNA sequencing, phylogenetic analysis and inoculation trials in greenhouse. The results indicated that the seven of the endophytes exerted more than 42% inhibitory effects after the first and the second screening. These strains belonged to genus Bacillus, Pseudomonas, Sinorhizobium and Stenotrophomonas, respectively. Microscopic observation showed that the affected hyphae ends of A. longipes appear deformity of coralline branch, spherical expansions and so on. Antagonistic experiments with metabolites showed that the inhibition of endophytic bacteria against pathogenic fungus played an effective role mainly by bacteria producing extracellular substances. Confrontation tests suggested that endophytic Bacillus rapidly produced biofilm to effectively hinder the growth and extension of pathogen hyphae. Inoculation experiments showed that the disease index of treatment group was significantly lowered compared with the control, suggesting it could be utilized as a biological control resource inhibiting tobacco brown spot.
Asunto(s)
Alternaria , Antibiosis , Bacterias/aislamiento & purificación , Glycine max/microbiología , Nódulos de las Raíces de las Plantas/microbiología , ADN Bacteriano/genética , Endófitos/aislamiento & purificación , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Culturable endophytic bacteria were isolated from medicinal plant Ilex cornuta by plate-spreading method, strains with strong inhibitory effect on phytopathogen were screened by confrontation culture and fermentation filtrate culture methods, and the morphological changes of phytopathogen hyphae treated with endophytic bacteria were examined by microscopy and micrograph. Their phylogenetic relationships were determined by homology analysis of the 16S rDNA sequences of PCR products and the taxonomic status of the selected strains was determined based on their morphology, physiology, biochemical test results and 16S rDNA sequence analysis. A total of 85 endophytic bacteria were isolated from the healthy roots, stems, leaves and fruits of I. cornuta, and 10 strains of them showed strong inhibitory effect on Alternaria alternata, Magnaporthe grisea, Fusarium oxysporum, and were preliminarily identified belonging to four genera and seven species. Three strains with the strongest inhibitory effect, GG78 (60.3%), GG31 (48.1%) and GG13 (61.0%) belonged to Enterobacter cloacae, Enterobacter ludwigii and Bacillus cereus, respectively. Microscopic analyses showed that the inhibited phytopathogen hyphae became deformed, distorted, and partially expanded forming plasma concentration and hair-like branch on the hyphae base. These morphological changes could be caused by the extracellular metabolic substances secreted by the endophytic bacteria, such as antibiotics, hydrolytic enzymes, alkaloids and so on.
Asunto(s)
Bacterias/clasificación , Ilex/microbiología , Plantas Medicinales/microbiología , Probióticos , Endófitos/clasificación , Frutas , Filogenia , Hojas de la Planta , Raíces de Plantas , ARN Ribosómico 16S/genéticaRESUMEN
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent.
Asunto(s)
Endófitos/aislamiento & purificación , Endófitos/metabolismo , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Sophora/microbiología , Antibacterianos/farmacología , Antibiosis , Ácidos Carboxílicos/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Endófitos/clasificación , Endófitos/genética , Hongos/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Datos de Secuencia Molecular , Fosfatos/metabolismo , Filogenia , Desarrollo de la Planta , Raíces de Plantas/microbiología , Pseudomonas/clasificación , Pseudomonas/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sideróforos/metabolismo , Cloruro de Sodio/metabolismo , Sophora/crecimiento & desarrollo , TemperaturaRESUMEN
A total of 115 endophytic bacteria were isolated from root nodules of the wild legume Sphaerophysa salsula grown in two ecological regions of Loess Plateau in China. The genetic diversity and phylogeny of the strains were revealed by restriction fragment length polymorphism and sequencing of 16S rRNA gene and enterobacterial repetitive intergenic consensus-PCR. Their symbiotic capacity was checked by nodulation tests and analysis of nifH gene sequence. This is the first systematic study on endophytic bacteria associated with S. salsula root nodules. Fifty of the strains found were symbiotic bacteria belonging to eight putative species in the genera Mesorhizobium, Rhizobium and Sinorhizobium, harboring similar nifH genes; Mesorhizobium gobiense was the main group and 65 strains were nonsymbiotic bacteria related to 17 species in the genera Paracoccus, Sphingomonas, Inquilinus, Pseudomonas, Serratia, Mycobacterium, Nocardia, Streptomyces, Paenibacillus, Brevibacillus, Staphylococcus, Lysinibacillus and Bacillus, which were universally coexistent with symbiotic bacteria in the nodules. Differing from other similar studies, the present study is the first time that symbiotic and nonsymbiotic bacteria have been simultaneously isolated from the same root nodules, offering the possibility to accurately reveal the correlation between these two kinds of bacteria. These results provide valuable information about the interactions among the symbiotic bacteria, nonsymbiotic bacteria and their habitats.
Asunto(s)
Bacterias/clasificación , Fabaceae/microbiología , Variación Genética , Filogenia , Simbiosis , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , China , Ecosistema , Genotipo , Geografía , Oxidorreductasas/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiologíaRESUMEN
The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (µg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plantgrowth promoting agent.