Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Genet ; 36(3): 288-92, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981519

RESUMEN

In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/genética , Eliminación de Secuencia , Animales , Genoma , Mutagénesis Insercional
2.
Nat Genet ; 36(3): 283-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981521

RESUMEN

With the availability of complete genome sequence for Drosophila melanogaster, one of the next strategic goals for fly researchers is a complete gene knockout collection. The P-element transposon, the workhorse of D. melanogaster molecular genetics, has a pronounced nonrandom insertion spectrum. It has been estimated that 87% saturation of the approximately 13,500-gene complement of D. melanogaster might require generating and analyzing up to 150,000 insertions. We describe specific improvements to the lepidopteran transposon piggyBac and the P element that enabled us to tag and disrupt genes in D. melanogaster more efficiently. We generated over 29,000 inserts resulting in 53% gene saturation and a more diverse collection of phenotypically stronger insertional alleles. We found that piggyBac has distinct global and local gene-tagging behavior from that of P elements. Notably, piggyBac excisions from the germ line are nearly always precise, piggyBac does not share chromosomal hotspots associated with P and piggyBac is more effective at gene disruption because it lacks the P bias for insertion in 5' regulatory sequences.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/genética , Genes de Insecto , Animales , Mutagénesis Insercional
3.
Methods Mol Biol ; 1785: 89-118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29714014

RESUMEN

Monoclonal antibodies are the largest class of therapeutic proteins due in part to their ability to bind an antigen with a high degree of affinity and specificity. A precise determination of their epitope is important for gaining insights into their therapeutic mechanism of action and to help differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of multiple antibodies in parallel over the course of just several weeks. This approach is based on a combination of rational library design, yeast surface display, and next generation DNA sequencing and provides quantitative insights into the epitope residues most critical for the antibody-antigen interaction. As an example, we will use this method to map the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Mapeo Epitopo/métodos , Epítopos/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Epítopos/genética , Humanos , Mutagénesis , Biblioteca de Péptidos , Saccharomyces cerevisiae/genética
4.
J Mol Biol ; 427(6 Pt B): 1513-1534, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25284753

RESUMEN

The ability of antibodies to bind an antigen with a high degree of affinity and specificity has led them to become the largest and fastest growing class of therapeutic proteins. Clearly identifying the epitope at which they bind their cognate antigen provides insight into their mechanism of action and helps differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of a panel of antibodies in parallel over the course of several weeks. This method relies on the combination of rational library design, quantitative yeast surface display and next-generation DNA sequencing and was demonstrated by mapping the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one antibody and alpha toxin and was further refined by the inclusion of a lower-affinity variant of the antibody. In addition, this method produced quantitative insight into the epitope residues most critical for the antibody-antigen interaction and enabled the relative affinities of each antibody toward alpha toxin variants to be estimated. This affinity estimate serves as a predictor of neutralizing antibody potency and was used to anticipate the ability of each antibody to effectively bind and neutralize naturally occurring alpha toxin variants secreted by strains of S. aureus, including clinically relevant strains. Ultimately this type information can be used to help select the best clinical candidate among a set of antibodies against a given antigen.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Toxinas Bacterianas/inmunología , Epítopos/análisis , Proteínas Hemolisinas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Biblioteca de Péptidos , Saccharomyces cerevisiae/inmunología , Infecciones Estafilocócicas/prevención & control , Secuencia de Aminoácidos , Anticuerpos Monoclonales/genética , Toxinas Bacterianas/genética , Mapeo Epitopo/métodos , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Citometría de Flujo , Proteínas Hemolisinas/genética , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología
5.
Sci Transl Med ; 6(248): 248ra106, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100740

RESUMEN

In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.


Asunto(s)
Linfocitos B/inmunología , Sistema Nervioso Central/patología , Sistema Inmunológico/inmunología , Cambio de Clase de Inmunoglobulina , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Adulto , Afinidad de Anticuerpos/inmunología , Agregación Celular , Líquido Cefalorraquídeo/metabolismo , Femenino , Citometría de Flujo , Humanos , Región Variable de Inmunoglobulina/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Análisis de Secuencia de Proteína , Hipermutación Somática de Inmunoglobulina/genética , Adulto Joven
6.
Thyroid ; 23(12): 1569-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23705946

RESUMEN

BACKGROUND: A limited number of approved therapeutic options are available to metastatic medullary thyroid cancer (MTC) patients, and the response to conventional chemotherapy and/or radiotherapy strategies is inadequate. Sporadic and inherited mutations in the tyrosine kinase RET result in oncogenic activation that is associated with the pathogenesis of MTC. Cabozantinib is a potent inhibitor of MET, RET, and vascular endothelial factor receptor 2 (VEGFR2), as well as other tyrosine kinases that have been implicated in tumor development and progression. The object of this study was to determine the in vitro biochemical and cellular inhibitory profile of cabozantinib against RET, and in vivo antitumor efficacy using a xenograft model of MTC. METHODS: Cabozantinib was evaluated in biochemical and cell-based assays that determined the potency of the compound against wild type and activating mutant forms of RET. Additionally, the pharmacodynamic modulation of RET and MET and in vivo antitumor activity of cabozantinib was examined in a MTC tumor model following subchronic oral administration. RESULTS: In biochemical assays, cabozantinib inhibited multiple forms of oncogenic RET kinase activity, including M918T and Y791F mutants. Additionally, it inhibited proliferation of TT tumor cells that harbor a C634W activating mutation of RET that is most often associated with MEN2A and familial MTC. In these same cells grown as xenograft tumors in nude mice, oral administration of cabozantinib resulted in dose-dependent tumor growth inhibition that correlated with a reduction in circulating plasma calcitonin levels. Moreover, immunohistochemical analyses of tumors revealed that cabozantinib reduced levels of phosphorylated MET and RET, and decreased tumor cellularity, proliferation, and vascularization. CONCLUSIONS: Cabozantinib is a potent inhibitor of RET and prevalent mutationally activated forms of RET known to be associated with MTC, and effectively inhibits the growth of a MTC tumor cell model in vitro and in vivo.


Asunto(s)
Anilidas/farmacología , Carcinoma Medular/tratamiento farmacológico , Piridinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Neoplasias de la Tiroides/tratamiento farmacológico , Anilidas/uso terapéutico , Animales , Carcinoma Medular/metabolismo , Carcinoma Medular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Piridinas/uso terapéutico , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Resultado del Tratamiento , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA